Question: WGCNA - Choosing the best threshold
0
gravatar for fabricio_almeidasilva
21 months ago by
fabricio_almeidasilva0 wrote:

Hi all,

I am running WGCNA to analyze my 51 samples and I have a problem when choosing the best threshold. 

 

Here are the code I used and the result result I got. Should I pick 2 as the soft threshold?

Any help is appreciated. Thank you very much!

powers = c(c(1:10), seq(from = 12, to=20, by=2))
sft = pickSoftThreshold(datExpr, powerVector = powers, verbose = 2)

 

  Power SFT.R.sq  slope truncated.R.sq mean.k. median.k. max.k.
1      1    0.927 -2.940          0.977    6840    6230.0  14500
2      2    0.975 -3.140          0.982    1770    1480.0   5660
3      3    0.844 -2.380          0.859     868     768.0   3280
4      4    0.732 -1.940          0.895     568     545.0   2300
5      5    0.656 -1.730          0.884     429     390.0   1770
6      6    0.602 -1.520          0.879     351     287.0   1440
7      7    0.572 -1.340          0.788     302     218.0   1210
8      8    0.531 -1.090          0.617     269     169.0   1040
9      9    0.671 -0.803          0.614     245     133.0    913
10    10    0.676 -0.706          0.584     227     107.0    832
11    12    0.642 -0.736          0.540     201      70.3    804
12    14    0.653 -0.729          0.555     184      48.5    784
13    16    0.660 -0.714          0.564     171      34.7    769
14    18    0.669 -0.704          0.574     162      25.6    756
15    20    0.670 -0.699          0.575     154      19.2    746

 

ADD COMMENTlink modified 21 months ago by Peter Langfelder2.3k • written 21 months ago by fabricio_almeidasilva0
Answer: WGCNA - Choosing the best threshold
1
gravatar for Peter Langfelder
21 months ago by
United States
Peter Langfelder2.3k wrote:

You don't say how many genes/transcripts and samples you have in you data set and what conditions this data some from, so it's hard to judge.

I personally would be wary of using a power 2 in a regular unsigned network because of the large mean/median connectivities you see in the output. I usually work with RNA-seq data sets of  less than 100 samples summarized to about 20k genes and usually pick the soft threshold such that median connectivity is "on the order of" 30-50, which would lead to a high power of 12. Needing such high power to achieve what I consider a reasonable connectivity would make me go back and double-check the data. But all this depends on the data set, it is definitely not set in stone.

ADD COMMENTlink written 21 months ago by Peter Langfelder2.3k
Please log in to add an answer.

Help
Access

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 16.09
Traffic: 162 users visited in the last hour