DESeq2 with interaction using SVA
1
4
Entering edit mode
@kevinkingsland-14899
Last seen 3.6 years ago

Hello all,

I tried searching for this specific problem but could not find the answer.  I will happily accept a link to a previous question if such exists.

To keep this simple, I can go into more details in response, I am using DESeq2 to analyze the effect of heat stress on expression in two closely-related fish species.  I want to determine if the species vary in their response to the heat stress. So the model I used in DESeq2 was:

dds=DESeqDataSetFromMatrix(countData=countmatrix, colData=coldata, design= ~species+treatment+species:treatment)
dds$test <-factor(paste0(dds$species,dds$treatment))
design(dds) <- ~test
dds <-DESeq(dds)

I also want to eliminate any potential hidden batch effects using SVA.  So I followed the code in the DESeq2 walkthrough.

I created a new DESeqDataSet and included the two surrogate variables in the model and the grouping variable from the original DESeqDataSet:

ddssva <- dds
ddssva$SV1 <- svseq$sv[,1]
ddssva$SV2 <- svseq$sv[,2]
design(ddssva) <- ~ SV1 + SV2 + test
ddssva <- DESeq(ddssva)

My question is, is this the correct model to use to test if the species vary in their response to the heat stress, considering the effects of the surrogate variables?


I'll include the relevant code below. Thanks much, and forgive mistakes in etiquette as this is my first question post.

Sincerely,

Kevin

countmatrix<-read.csv(file="C:\\Kevin\\UniqueCounts.csv" ,header=TRUE, row.names=1)
as.matrix(countmatrix[,-1])
colnames(countmatrix) <- NULL
coldata = data.frame(row.names = c('pallidC-1', 'pallidC-2', 'pallidC-3', 'pallidC-4', 'pallidC-5', 'shovelC-1', 'shovelC-2',  'shovelC-3','pallidH-1','pallidH-2','pallidH-3','pallidH-4','pallidH-5','shovelH-1','shovelH-2','shovelH-3'),species=c("pallid","pallid","pallid","pallid","pallid","shovelnose","shovelnose","shovelnose","pallid","pallid","pallid","pallid","pallid","shovelnose","shovelnose","shovelnose"),treatment=rep(c("control","heat"),each=8))
dds=DESeqDataSetFromMatrix(countData=countmatrix, colData=coldata, design= ~species+treatment+species:treatment)
dds$test <-factor(paste0(dds$species,dds$treatment))
design(dds) <- ~test
dds <-DESeq(dds)

dat <- counts(dds, normalized=TRUE)
idx <- rowMeans(dat) > 1
dat <- dat[idx,]
mod <- model.matrix(~ test, colData(dds))
mod0 <- model.matrix(~ 1, colData(dds))
svseq <- svaseq(dat, mod, mod0, n.sv=2)
    Number of significant surrogate variables is:  2
    Iteration (out of 5 ):1  2  3  4  5  
svseq$sv
par(mfrow=c(2,1),mar=c(3,5,3,1))
stripchart(svseq$sv[,1] ~ dds$species,vertical=TRUE,main="SV1")
abline(h=0)
stripchart(svseq$sv[,2] ~ dds$species,vertical=TRUE,main="SV2")
abline(h=0)
ddssva <- dds
ddssva$SV1 <- svseq$sv[,1]
ddssva$SV2 <- svseq$sv[,2]
design(ddssva) <- ~ SV1 + SV2 + test
ddssva <- DESeq(ddssva)

Note: the "UniqueCounts.csv" file contains 49,126 rows of data, one for each gene/transcript in my assembled transcriptome, and 16 columns of data corresponding to the 16 RNA libraries used in the study.

deseq2 sva interaction term grouping variable deseq • 2.4k views
ADD COMMENT
0
Entering edit mode

Hello Kevin, Could you please suggest here how to use contrast after these steps, because I am facing a problem.

Thank you!!

Anshul

ADD REPLY
1
Entering edit mode
@mikelove
Last seen 3 hours ago
United States

Yes that’s the correct code. 

ADD COMMENT
0
Entering edit mode

Thank you Michael.  I'll be sure to submit any additional questions that may pop up.

ADD REPLY

Login before adding your answer.

Traffic: 255 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6