How to extract proteins from PCs in plot_pca in DEP package
0
0
Entering edit mode
fuqichen1 • 0
@1cab426a
Last seen 13 months ago
Hong Kong

I am using DEP package to analyze proteomics data. I did PCA for my samples (see the following plot) and wish to extract proteins in PC1 for further analysis. However, the objects x and y generated by the following code do not contain the information of the principal component (only the coordinates). May I ask for a solution?

enter image description here


x <- plot_pca(dep_MDA231, x = 1, y = 2, n = 500, point_size = 4,plot = T)
y <- plot_pca(dep_MDA231, x = 1, y = 2, n = 500, point_size = 4,plot = F)

sessionInfo( )
R version 4.2.2 (2022-10-31)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Ventura 13.2

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] magick_2.7.3                DEP_1.20.0                  forcats_1.0.0              
 [4] stringr_1.5.0               dplyr_1.1.0                 purrr_1.0.1                
 [7] readr_2.1.4                 tidyr_1.3.0                 tibble_3.1.8               
[10] ggplot2_3.4.1               tidyverse_1.3.2             SummarizedExperiment_1.28.0
[13] Biobase_2.58.0              GenomicRanges_1.50.2        GenomeInfoDb_1.34.9        
[16] IRanges_2.32.0              S4Vectors_0.36.1            BiocGenerics_0.44.0        
[19] MatrixGenerics_1.10.0       matrixStats_0.63.0         

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0      colorspace_2.1-0       rjson_0.2.21          
  [4] ellipsis_0.3.2         circlize_0.4.15        XVector_0.38.0        
  [7] GlobalOptions_0.1.2    fs_1.6.1               clue_0.3-64           
 [10] rstudioapi_0.14        farver_2.1.1           mzR_2.32.0            
 [13] affyio_1.68.0          DT_0.27                fansi_1.0.4           
 [16] mvtnorm_1.1-3          lubridate_1.9.2        xml2_1.3.3            
 [19] codetools_0.2-18       ncdf4_1.21             doParallel_1.0.17     
 [22] impute_1.72.3          jsonlite_1.8.4         broom_1.0.3           
 [25] cluster_2.1.4          vsn_3.66.0             dbplyr_2.3.0          
 [28] png_0.1-8              shinydashboard_0.7.2   shiny_1.7.4           
 [31] BiocManager_1.30.19    compiler_4.2.2         httr_1.4.4            
 [34] backports_1.4.1        fastmap_1.1.0          assertthat_0.2.1      
 [37] Matrix_1.5-1           gmm_1.7                gargle_1.3.0          
 [40] limma_3.54.1           cli_3.6.0              later_1.3.0           
 [43] htmltools_0.5.4        tools_4.2.2            gtable_0.3.1          
 [46] glue_1.6.2             GenomeInfoDbData_1.2.9 affy_1.76.0           
 [49] Rcpp_1.0.10            MALDIquant_1.22        cellranger_1.1.0      
 [52] vctrs_0.5.2            preprocessCore_1.60.2  iterators_1.0.14      
 [55] tmvtnorm_1.5           rvest_1.0.3            mime_0.12             
 [58] timechange_0.2.0       lifecycle_1.0.3        XML_3.99-0.13         
 [61] googlesheets4_1.0.1    zoo_1.8-11             zlibbioc_1.44.0       
 [64] MASS_7.3-58.1          scales_1.2.1           MSnbase_2.24.2        
 [67] promises_1.2.0.1       pcaMethods_1.90.0      hms_1.1.2             
 [70] ProtGenerics_1.30.0    sandwich_3.0-2         parallel_4.2.2        
 [73] RColorBrewer_1.1-3     ComplexHeatmap_2.14.0  gridExtra_2.3         
 [76] stringi_1.7.12         foreach_1.5.2          BiocParallel_1.32.5   
 [79] shape_1.4.6            rlang_1.0.6            pkgconfig_2.0.3       
 [82] bitops_1.0-7           imputeLCMD_2.1         mzID_1.36.0           
 [85] lattice_0.20-45        labeling_0.4.2         htmlwidgets_1.6.1     
 [88] tidyselect_1.2.0       norm_1.0-10.0          plyr_1.8.8            
 [91] magrittr_2.0.3         R6_2.5.1               generics_0.1.3        
 [94] DelayedArray_0.24.0    DBI_1.1.3              pillar_1.8.1          
 [97] haven_2.5.1            withr_2.5.0            MsCoreUtils_1.10.0    
[100] RCurl_1.98-1.10        modelr_0.1.10          crayon_1.5.2          
[103] fdrtool_1.2.17         utf8_1.2.3             tzdb_0.3.0            
[106] GetoptLong_1.0.5       grid_4.2.2             readxl_1.4.2          
[109] reprex_2.0.2           digest_0.6.31          xtable_1.8-4          
[112] httpuv_1.6.8           munsell_0.5.0
DEP PrincipalComponent PCA plot_pca • 612 views
ADD COMMENT
0
Entering edit mode

Which information do you want precisely ? plot_pca is just a wrapper for PCA visualization, but it applies prcomp to perform PCA : https://rdrr.io/bioc/DEP/src/R/plot_functions_explore.R

ADD REPLY

Login before adding your answer.

Traffic: 699 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6