CleanUpRNAseq with a GTF that is missing mitochondria annotation data
1
0
Entering edit mode
rcreed • 0
@e847af5e
Last seen 10 days ago
United States

I am running CleanUpRNAseq on tomato RNAseq data prepared through ribodepletion: however, the ensembl tomato GTF file does not include mitochondria or chloroplast annotations.

The following code works fine for me, except the resulting saf_list does not include a data frame for the organelle annotations:

bam_file <- file.path("../star_salmon/32_13_1_2.markdup.sorted.bam")

saf_list <- get_saf(
    ensdb_sqlite = sl_ensdb,
    bamfile = bam_file,
    ##mitochondrial_genome = "MT" ##commented out because there are no annotations for this in the GTF file
)

This causes an issue in generating the counts list in the following chunk:

## featurecounts 
 capture.output({counts_list <- summarize_reads(
     SummarizedCounts = sc,
     saf_list = saf_list,
     gtf = gtf,
     threads = 16,
     verbose = TRUE
 )}, file = tempfile())
Error in summarize_reads(SummarizedCounts = sc, saf_list = saf_list, gtf = gtf,  : 
  A valid SAF list for gene, exon, intergenic region,intronic region, rRNA genes, and mitochondrion is needed

Is it possible to run CleanUpRNAseq without annotation data associated with organelles?

# Session info
sessionInfo( )
  [1] RColorBrewer_1.1-3          rstudioapi_0.17.1           jsonlite_1.8.9              tximport_1.34.0            
  [5] magrittr_2.0.3              farver_2.1.2                rmarkdown_2.29              fs_1.6.5                   
  [9] BiocIO_1.16.0               zlibbioc_1.52.0             vctrs_0.6.5                 memoise_2.0.1              
 [13] Rsamtools_2.22.0            RCurl_1.98-1.16             base64enc_0.1-3             htmltools_0.5.8.1          
 [17] S4Arrays_1.6.0              curl_5.2.1                  gridGraphics_0.5-1          SparseArray_1.6.0          
 [21] Formula_1.2-5               KernSmooth_2.23-24          htmlwidgets_1.6.4           plyr_1.8.9                 
 [25] cachem_1.1.0                GenomicAlignments_1.42.0    lifecycle_1.0.4             pkgconfig_2.0.3            
 [29] Matrix_1.7-1                R6_2.5.1                    fastmap_1.2.0               GenomeInfoDbData_1.2.13    
 [33] MatrixGenerics_1.18.0       digest_0.6.37               colorspace_2.1-1            DESeq2_1.46.0              
 [37] Hmisc_5.2-0                 RSQLite_2.3.7               fansi_1.0.6                 httr_1.4.7                 
 [41] abind_1.4-8                 mgcv_1.9-1                  compiler_4.4.1              bit64_4.5.2                
 [45] htmlTable_2.4.3             backports_1.5.0             BiocParallel_1.40.0         DBI_1.2.3                  
 [49] DelayedArray_0.32.0         rjson_0.2.23                tools_4.4.1                 foreign_0.8-87             
 [53] nnet_7.3-19                 glue_1.8.0                  restfulr_0.0.15             nlme_3.1-166               
 [57] grid_4.4.1                  checkmate_2.3.2             cluster_2.1.6               reshape2_1.4.4             
 [61] generics_0.1.3              sva_3.54.0                  gtable_0.3.6                BSgenome_1.74.0            
 [65] qsmooth_1.22.0              data.table_1.16.2           utf8_1.2.4                  XVector_0.46.0             
 [69] ggrepel_0.9.6               pillar_1.9.0                stringr_1.5.1               yulab.utils_0.1.8          
 [73] limma_3.62.1                genefilter_1.88.0           splines_4.4.1               dplyr_1.1.4                
 [77] lattice_0.22-6              survival_3.7-0              rtracklayer_1.66.0          bit_4.5.0                  
 [81] annotate_1.84.0             tidyselect_1.2.1            locfit_1.5-9.10             Biostrings_2.74.0          
 [85] knitr_1.49                  gridExtra_2.3               ProtGenerics_1.38.0         edgeR_4.4.0                
 [89] SummarizedExperiment_1.36.0 xfun_0.49                   statmod_1.5.0               matrixStats_1.4.1          
 [93] pheatmap_1.0.12             stringi_1.8.4               UCSC.utils_1.2.0            lazyeval_0.2.2             
 [97] yaml_2.3.10                 evaluate_1.0.1              codetools_0.2-20            tibble_3.2.1               
[101] cli_3.6.3                   rpart_4.1.23                xtable_1.8-4                munsell_0.5.1              
[105] Rsubread_2.20.0             Rcpp_1.0.13-1               png_0.1-8                   XML_3.99-0.17              
[109] parallel_4.4.1              ggplot2_3.5.1               blob_1.2.4                  bitops_1.0-9               
[113] scales_1.3.0                crayon_1.5.3                rlang_1.1.4                 KEGGREST_1.46.0
CleanUpRNAseq • 244 views
ADD COMMENT
2
Entering edit mode
Haibo Liu ▴ 20
@haibol2017-23658
Last seen 10 days ago
United States

Thank you for using our CleanUpRNAseq package.

I just update the code in the package to accomodate a GTF without mitochondrial annotation. Please remove your current installation and reinstall the package as follows:

install.packages("devtools")
devtools::install_github("haibol2016/CleanUpRNAseq")

It will take some time for the Bioconductor site to update the package.

If you encounter any problems, please let me know.

ADD COMMENT
0
Entering edit mode

@haibol2017-23658 make sure you have the valid version bump in the description on our git repository in order for the new version to propagate

ADD REPLY
0
Entering edit mode

Thank you for your reminder. I did forget that, but I just bumped the version to 1.1.1.

ADD REPLY
0
Entering edit mode

The updated version worked well on my data. Thank you!

ADD REPLY

Login before adding your answer.

Traffic: 651 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6