Hi,
I have a SingleCellExperiment
object:
class: SingleCellExperiment dim: 27998 3265 metadata(0): assays(1): counts rownames(27998): ENSMUSG00000051951 ENSMUSG00000089699 ... ENSMUSG00000096730 ENSMUSG00000095742 rowData names(2): id symbol colnames: NULL colData names(2): dataset barcode reducedDimNames(0): spikeNames(0):
and I would like to use the scater package for quality control.
When I try to use e.g. the calculateCPM
function according to this tutorial: https://bioconductor.org/packages/devel/bioc/vignettes/scater/inst/doc/vignette.html
I get the following error:
> exprs(sce10x) <- log2( + calculateCPM(sce10x, use.size.factors = FALSE) + 1) Error in colSums(counts_mat) : 'x' must be an array of at least two dimensions
Other errors also turn up, e.g.runTSNE
:
> runTSNE(object = sce10x, exprs_values = "counts") Error in matrixStats::rowVars(exprs_mat) : Argument 'x' must be a matrix or a vector.
The count matrix is saved as a sparse matrix:
> class(counts(sce10x)) [1] "dgTMatrix" attr(,"package") [1] "Matrix"
My question now is: Can the scater package not yet handle this data structure or do I have outdated/incompatible packages installed? In the latter case, how can I know which packages I have to upgrade/downgrade? I have installed some packages with devtools::install_github
and some with the useDevel
(i.e. development versions of bioconductor packages). I am not experienced with managing conflicts with packages and would thus be thankful if someone could clarify.
> sessionInfo()
R version 3.4.1 (2017-06-30) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Red Hat Enterprise Linux Workstation release 6.9 (Santiago) Matrix products: default BLAS/LAPACK: /usr/prog/OpenBLAS/0.2.8-gompi-1.5.14-NX-LAPACK-3.5.0/lib/libopenblas_nehalemp-r0.2.8.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] profvis_0.3.3 purrr_0.2.3 stringr_1.2.0 biomaRt_2.33.4 [5] igraph_1.1.2 Ckmeans.1d.dp_4.2.1 topGO_2.29.0 SparseM_1.77 [9] GO.db_3.4.1 AnnotationDbi_1.38.1 graph_1.55.0 statmod_1.4.30 [13] edgeR_3.19.6 limma_3.32.7 cellrangerRkit_1.1.0 Rmisc_1.5 [17] plyr_1.8.4 lattice_0.20-35 bit64_0.9-7 bit_1.1-12 [21] RColorBrewer_1.1-2 Matrix_1.2-11 scater_1.5.12 ggplot2_2.2.1 [25] SingleCellExperiment_0.99.4 SummarizedExperiment_1.7.9 DelayedArray_0.3.20 matrixStats_0.52.2 [29] Biobase_2.36.2 GenomicRanges_1.29.14 GenomeInfoDb_1.13.4 IRanges_2.11.17 [33] S4Vectors_0.15.8 BiocGenerics_0.22.0 loaded via a namespace (and not attached): [1] viridis_0.4.0 viridisLite_0.2.0 shiny_1.0.5 assertthat_0.2.0 blob_1.1.0 [6] GenomeInfoDbData_0.99.0 vipor_0.4.5 yaml_2.1.14 progress_1.1.2 RSQLite_2.0 [11] glue_1.1.1 digest_0.6.12 XVector_0.17.1 colorspace_1.3-2 htmltools_0.3.6 [16] httpuv_1.3.5 devtools_1.13.3 XML_3.98-1.9 pkgconfig_2.0.1 pheatmap_1.0.8 [21] zlibbioc_1.22.0 xtable_1.8-2 scales_0.5.0 Rtsne_0.13 tibble_1.3.4 [26] withr_2.0.0 lazyeval_0.2.0 magrittr_1.5 mime_0.5 memoise_1.1.0 [31] beeswarm_0.2.3 shinydashboard_0.6.1 tools_3.4.1 data.table_1.10.4 prettyunits_1.0.2 [36] munsell_0.4.3 locfit_1.5-9.1 irlba_2.2.1 bindrcpp_0.2 compiler_3.4.1 [41] rlang_0.1.2 rhdf5_2.21.4 grid_3.4.1 RCurl_1.95-4.8 tximport_1.5.0 [46] htmlwidgets_0.9 rjson_0.2.15 bitops_1.0-6 gtable_0.2.0 DBI_0.7 [51] reshape2_1.4.2 R6_2.2.2 gridExtra_2.3 dplyr_0.7.3 bindr_0.1 [56] stringi_1.1.5 ggbeeswarm_0.6.0 Rcpp_0.12.13