I'm running into a curious issue with DiffBind's plotHeatmap
function when used with a single contrast.
It appears to either be omitting some of the results or I'm misusing it. Either way, I'd like to determine the issue.
I've run my analysis and identified ~13000 differentially bound sites:
> k27_results
24 Samples, 55742 sites in matrix:
...
1 Contrast:
Group1 Members1 Group2 Members2 DB.DESeq2
1 Normal 6 Tumor 18 13252
Great. Now I check how many are in enriched in either the Normal or Tumor samples.
results = dba.report(k27_results)
> sum(results$Fold>0)
[1] 10185
> sum(results$Fold<0)
[1] 3067
Okay, so ~10k enriched in the Normal samples, and ~3k in the Tumor samples. Then I try to make heatmaps to show these.
> dba.plotHeatmap(k27_results, correlations=FALSE, scale="row", density.info="none", colScheme=f_color, breaks=breaks, contrast=1)
It doesn't appear that the Tumor enriched sites are being displayed. However, when I remove the contrast
parameter from the heatmap call, it looks more appropriate, though I thought that displayed all sites, not just those found to be differentially bound.
Am I correct in thinking that or am I wrong here? Clarification would be very much appreciated.
> dba.plotHeatmap(k27_results, correlations=FALSE, scale="row", density.info="none", colScheme=f_color, breaks=breaks)
Let me know if any other information is needed.
Session Info:
> sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United States.1252
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2 DiffBind_2.6.1 ReportingTools_2.17.3
[4] knitr_1.17 BiocInstaller_1.28.0 DESeq2_1.18.1
[7] SummarizedExperiment_1.8.0 DelayedArray_0.4.1 matrixStats_0.52.2
[10] readr_1.1.1 tximport_1.6.0 TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[13] GenomicFeatures_1.30.0 GenomicRanges_1.30.0 GenomeInfoDb_1.14.0
[16] org.Hs.eg.db_3.5.0 annotate_1.56.1 XML_3.98-1.9
[19] AnnotationDbi_1.40.0 IRanges_2.12.0 S4Vectors_0.16.0
[22] Biobase_2.38.0 BiocGenerics_0.24.0
loaded via a namespace (and not attached):
[1] backports_1.1.1 GOstats_2.44.0 Hmisc_4.0-3 AnnotationHub_2.10.1
[5] plyr_1.8.4 lazyeval_0.2.1 GSEABase_1.40.1 splines_3.4.2
[9] BatchJobs_1.7 BiocParallel_1.12.0 ggplot2_2.2.1 amap_0.8-14
[13] digest_0.6.12 ensembldb_2.2.0 htmltools_0.3.6 GO.db_3.5.0
[17] gdata_2.18.0 magrittr_1.5 checkmate_1.8.5 memoise_1.1.0
[21] BBmisc_1.11 BSgenome_1.46.0 cluster_2.0.6 limma_3.34.2
[25] Biostrings_2.46.0 systemPipeR_1.12.0 R.utils_2.6.0 ggbio_1.26.0
[29] prettyunits_1.0.2 colorspace_1.3-2 ggrepel_0.7.0 blob_1.1.0
[33] dplyr_0.7.4 RCurl_1.95-4.8 graph_1.56.0 genefilter_1.60.0
[37] bindr_0.1 glue_1.2.0 brew_1.0-6 survival_2.41-3
[41] sendmailR_1.2-1 VariantAnnotation_1.24.2 gtable_0.2.0 zlibbioc_1.24.0
[45] XVector_0.18.0 Rgraphviz_2.22.0 scales_0.5.0 pheatmap_1.0.8
[49] DBI_0.7 GGally_1.3.2 edgeR_3.20.1 Rcpp_0.12.14
[53] xtable_1.8-2 progress_1.1.2 htmlTable_1.9 foreign_0.8-69
[57] bit_1.1-12 OrganismDbi_1.20.0 Formula_1.2-2 AnnotationForge_1.20.0
[61] htmlwidgets_0.9 httr_1.3.1 gplots_3.0.1 RColorBrewer_1.1-2
[65] acepack_1.4.1 pkgconfig_2.0.1 reshape_0.8.7 R.methodsS3_1.7.1
[69] nnet_7.3-12 locfit_1.5-9.1 labeling_0.3 rlang_0.1.4
[73] reshape2_1.4.2 munsell_0.4.3 tools_3.4.2 RSQLite_2.0
[77] stringr_1.2.0 yaml_2.1.14 bit64_0.9-7 caTools_1.17.1
[81] AnnotationFilter_1.2.0 RBGL_1.54.0 mime_0.5 R.oo_1.21.0
[85] biomaRt_2.34.0 compiler_3.4.2 curl_3.0 interactiveDisplayBase_1.16.0
[89] PFAM.db_3.5.0 tibble_1.3.4 geneplotter_1.56.0 stringi_1.1.6
[93] lattice_0.20-35 ProtGenerics_1.10.0 Matrix_1.2-12 data.table_1.10.4-3
[97] bitops_1.0-6 httpuv_1.3.5 rtracklayer_1.38.0 R6_2.2.2
[101] latticeExtra_0.6-28 hwriter_1.3.2 RMySQL_0.10.13 ShortRead_1.36.0
[105] KernSmooth_2.23-15 gridExtra_2.3 dichromat_2.0-0 gtools_3.5.0
[109] assertthat_0.2.0 Category_2.44.0 rjson_0.2.15 GenomicAlignments_1.14.1
[113] Rsamtools_1.30.0 GenomeInfoDbData_0.99.1 hms_0.4.0 grid_3.4.2
[117] rpart_4.1-11 biovizBase_1.26.0 shiny_1.0.5 base64enc_0.1-3
Ah, that clarifies things exceptionally well. Thanks!