Error Combat (SVA)
0
0
Entering edit mode
@alisonsarawaller-7103
Last seen 5.9 years ago
Germany

Hi there,

I am analyzing high-throughput metabolomics data.

The samples were run in 6 batches.

I previously used sva/combat to normalize for the batch effects.  We have since re-run the feature finding, I am running my old script on new data and now getting an error.  The rows are the samples, and the columns are the metabolites.

    df_CmB<-ComBat(t(df),batch=df_MSBa,mod=NULL)

> str(df)
 num [1:5771, 1:5164] 10.3 11.2 11.1 13 11.7 ...
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:5771] "PA14_EM_1-1_A-10_1839" "PA14_EM_1-1_A-11_1840" "PA14_EM_1-1_A-12_1841" "PA14_EM_1-1_A-1_1830" ...
  ..$ : chr [1:5164] "nf_7526" "nf_3587" "nf_1096" "nf_4568" ...

> str( df_MSBa)
 Factor w/ 6 levels "MSB1","MSB2",..: 1 1 1 1 1 1 1 1 1 1 ...

> length(df_MSBa)
[1] 5771

I"m getting 2 different error messages.  The first time it said 0 covariates, the second 6.

Any help is appreciated.

> df_CmB<-ComBat(t(df),batch=df_MSBa,mod=NULL)
Found6batches
Adjusting for0covariate(s) or covariate level(s)
Standardizing Data across genes
Error in solve.default(crossprod(design), tcrossprod(t(design), as.matrix(dat))) :
  Lapack routine dgesv: system is exactly singular: U[6,6] = 0

> df_CmB<-ComBat(t(df),batch=df_MSBa,mod=NULL)
Found6batches
Adjusting for-6covariate(s) or covariate level(s)
Standardizing Data across genes
Error in tcrossprod(t(design), as.matrix(dat)) :
  non-conformable arguments

 

> sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_CA.UTF-8/en_CA.UTF-8/en_CA.UTF-8/C/en_CA.UTF-8/en_CA.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] sva_3.26.0          BiocParallel_1.12.0 genefilter_1.60.0   mgcv_1.8-22        
[5] nlme_3.1-131        plyr_1.8.4          dplyr_0.7.4         gdata_2.18.0       

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.14         compiler_3.4.3       bindr_0.1           
 [4] bitops_1.0-6         tools_3.4.3          digest_0.6.13       
 [7] bit_1.1-12           annotate_1.56.1      RSQLite_2.0         
[10] memoise_1.1.0        tibble_1.3.4         lattice_0.20-35     
[13] pkgconfig_2.0.1      rlang_0.1.6          Matrix_1.2-12       
[16] DBI_0.7              parallel_3.4.3       bindrcpp_0.2        
[19] IRanges_2.12.0       S4Vectors_0.16.0     gtools_3.5.0        
[22] stats4_3.4.3         bit64_0.9-7          grid_3.4.3          
[25] glue_1.2.0           Biobase_2.38.0       R6_2.2.2            
[28] AnnotationDbi_1.40.0 survival_2.41-3      XML_3.98-1.9        
[31] limma_3.34.5         blob_1.1.0           magrittr_1.5        
[34] matrixStats_0.52.2   splines_3.4.3        BiocGenerics_0.24.0
[37] assertthat_0.2.0     xtable_1.8-2         RCurl_1.95-4.9

 

 

 

 

sva • 1.0k views
ADD COMMENT

Login before adding your answer.

Traffic: 828 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6