Hi DiffBind gurus,
I have 4 samples of 4 different tissues.
2 of them treatment, 2 control, here are the main cols of the csv:
SampleID Tissue Condition Replicate
B1_S_ME MEF_S control 1
B4_5F_ME GETMS treatment 1
B7_4F_ME GTS treatment 2
MEF_ME_SRR MEF control 2
I contrasted control vs. treatment, and have the list of DB sites (I got all the way to DB report).
I'm puzzled with the last steps required for my analysis, and would appreciate your help.
For each site in DB sites, I want to identify the TISSUE it originated from.
I'm specifically interested to get the list of sites originating from TISSUE=GETMS.
below are the main steps and results:
peaks_min0 <- dba(sampleSheet="yossi_metadata_ME.csv", minOverlap=0)
peakset_cons_reps <- dba.peakset(peaks_min0, consensus = DBA_CONDITION, minOverlap=2)
peakset_cons_reps_restricted <- dba(peakset_cons_reps, mask=peakset_cons_reps$masks$Consensus,
minOverlap=0)
#Now retrieve the consensus of these:
cons_reps_data <- dba.peakset(peakset_cons_reps_restricted, bRetrieve=TRUE)
dba_cons_reps_only <- dba.count(peaks_min0, peaks=cons_reps_data, score=DBA_SCORE_TMM_READS_FULL)
cont_ME <- dba.contrast(dba_cons_reps_only,
group1 = dba_cons_reps_only$masks$control,
group2 = dba_cons_reps_only$masks$treatment,
name1="ME overlapped control", name2="ME overlapped treatment",
minMembers=2)
cont_ME <- dba.analyze(cont_ME, bSubControl=FALSE)
> cont_ME
4 Samples, 83071 sites in matrix:
ID Tissue Condition Replicate Caller Intervals FRiP
1 B1_S_ME MEF_S control 1 counts 83071 0.47
2 B4_5F_ME GETMS treatment 1 counts 83071 0.56
3 B7_4F_ME GTSM treatment 2 counts 83071 0.58
4 MEF_ME_SRR438553 MEF control 2 counts 83071 0.52
1 Contrast:
Group1 Members1 Group2 Members2 DB.DESeq2
1 ME overlapped control 2 ME overlapped treatment 2 14347
cont_ME_report <- dba.report(cont_ME)
> cont_ME_report_DB
GRanges object with 14347 ranges and 6 metadata columns:
seqnames ranges strand | Conc Conc_ME overlapped control
<Rle> <IRanges> <Rle> | <numeric> <numeric>
43757 chr2 [ 48790404, 48791870] * | 7.42 3.49
68298 chr7 [ 13598533, 13600990] * | 7.32 3.81
55509 chr4 [ 70932502, 70934825] * | 7.22 3.18
9948 chr10 [114659494, 114662104] * | 7.28 4.25
80420 chr9 [108173249, 108175844] * | 7.37 4.31
... ... ... ... . ... ...
35342 chr17 [ 56030657, 56033095] * | 8.24 7.83
45447 chr2 [ 93998537, 93999161] * | 7.78 7.31
78184 chr9 [ 54797722, 54800539] * | 8.9 8.59
55082 chr4 [ 58371584, 58372346] * | 4.3 5.02
10471 chr10 [126936260, 126938513] * | 5.54 6.14
Conc_ME overlapped treatment Fold p-value FDR
<numeric> <numeric> <numeric> <numeric>
43757 8.37 -4.88 1.83e-23 1.52e-18
68298 8.25 -4.44 9.29e-22 3.86e-17
55509 8.18 -5 2.6e-21 7.19e-17
9948 8.18 -3.93 5.46e-21 1.13e-16
80420 8.28 -3.97 1.78e-20 2.75e-16
... ... ... ... ...
35342 8.57 -0.74 0.00862 0.0499
45447 8.14 -0.83 0.00862 0.0499
78184 9.16 -0.57 0.00862 0.0499
55082 2.79 2.24 0.00863 0.05
10471 4.49 1.65 0.00863 0.05
Many thanks!
Michal