Limma two group layout; two approaches but different results
0
0
Entering edit mode
Björn Usadel ▴ 250
@bjorn-usadel-1492
Last seen 10.2 years ago
Hi all, Refering to section 8.4 of limmas User guide (2 groups) I found a little inconsistency (which might be a feature though), when using only 2 versus 2 Affymetrix arrays and the two methods proposed in the userguide. (differences versus contrasts) Even though, the M values are perfectly the same, there a very different p-values and different t-values. There are still slight differences for 2 versus 3 arrays, and these disappear with more slides. Is this a known behaviour? Otherwise, maybe a warning should be issued. And yes - taking 2 arrays per condition/genotype is standing on very shaky ground, but that is not up for me to decide. Method1 > toptable(fita,coef="MUvsWT",adjust="BH") M t P.Value B 4901 3.007937 17.67274 0.04321081 2.022252 4634 3.810009 16.17843 0.04321081 1.897954 5365 -3.003438 -16.08612 0.04321081 1.889342 4282 3.263951 13.71665 0.05394461 1.620254 4900 2.820148 13.63034 0.05394461 1.608386 6224 2.557232 13.33234 0.05394461 1.566076 4609 -2.197100 -12.31159 0.06801382 1.403791 1388 -3.369013 -11.80720 0.07283498 1.312306 5217 2.703997 11.35791 0.07804811 1.223567 4902 2.184269 10.95941 0.08339903 1.138550 Method2 (using contrasts) toptable(fit2,adjust="BH") M t P.Value B 4901 3.0079369 49.70266 0.6066029 -1.427223 3141 -0.7710439 -35.26161 0.6066029 -1.448119 1359 -0.9824312 -28.13189 0.6066029 -1.471786 791 0.4815546 25.80750 0.6066029 -1.483894 5365 -3.0034379 -23.94627 0.6066029 -1.496136 4609 -2.1971003 -22.47249 0.6066029 -1.507965 885 0.3017316 18.37909 0.6066029 -1.556058 6224 2.5572321 18.22744 0.6066029 -1.558443 4899 0.6554947 17.48778 0.6066029 -1.570918 6037 0.6788083 17.38863 0.6066029 -1.572704 Here the code (As data I used the data from section 11.3 where I simply took the first two files for each genotype) (http://visitor.ics.uci.edu/genex/cybert/tutorial/index.html) ########################################################### library(affy) library(limma) #readin arrays fns <- list.celfiles(path="C:/foo/bar/",full.names=TRUE) abatch <- ReadAffy(filenames=fns) #normalize using rma eset<-rma(abatch) #method1 design<-cbind(WT=c(1,1,1,1),MUvsWT=c(1,1,0,0)) fita <- lmFit(eset, design) fita<-eBayes(fita) toptable(fita,coef="MUvsWT",adjust="BH") #method2 design<-cbind(WT=c(0,0,1,1),MU=c(1,1,0,0)) fit<-lmFit(eset,design) cont.matrix <- makeContrasts( MUvsWT=MU-WT,levels=design) fit2 <- contrasts.fit(fit, cont.matrix) fit2 <- eBayes(fit2) toptable(fit2,adjust="BH") ########################################################### Kind regards, and thanks for your help, Bj?rn Usadel MPI of Molecular Plant Physiology PS There is also a little typo on page 39 of the User Guide instead of design <- cbind(WT=c(1,1,0,0,0,MU=c(0,0,1,1,1)) it should be design <- cbind(WT=c(1,1,0,0,0),MU=c(0,0,1,1,1))
• 948 views
ADD COMMENT

Login before adding your answer.

Traffic: 726 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6