Limma toptable question
1
0
Entering edit mode
Hua Weng ▴ 130
@hua-weng-1521
Last seen 10.2 years ago
An embedded and charset-unspecified text was scrubbed... Name: not available Url: https://stat.ethz.ch/pipermail/bioconductor/attachments/20051130/ 0b0883c8/attachment.pl
• 687 views
ADD COMMENT
0
Entering edit mode
@adaikalavan-ramasamy-675
Last seen 10.2 years ago
The ranking is determined by other values besides fold change (M). For example, a probeset with high M but also high variance will ranked lower than one with average M but much less variance. With LIMMA there are a few other parameters to consider as well. Regards, Adai On Wed, 2005-11-30 at 09:31 -0600, Hua Weng wrote: > Dear Bioconductor: > > > > There are two reasons that I think slr0146 shouldn't appear in top list: > > 1) The average M value, 0.3261, for slr0146 is less than 0.5 > > > MA.norm$M[MA.norm$genes["Name"] == "slr0146",] > > > slide151120 slide151274-2 > > > [1,] 0.3837 -0.2760 > > > [2,] 0.3677 -0.2824 > > > [3,] 0.3395 -0.2802 > > 2) There is only one full weight for slr0146, the other five spots have 0.1 > weight that means the other five spots have very low intensity in both > channels > > > MA.norm$weights[MA.norm$genes["Name"] == "slr0146",] > > > slide151120 slide151274-2 > > > [1,] 0.1 0.1 > > > [2,] 0.1 0.1 > > > [3,] 1.0 0.1 > > > > For slr1501 and slr1113, both of them have very high average M value, and > all the spots for these two probes are full weights that means all these > spots have strong intensity. > > > MA.norm$M[MA.norm$genes["Name"] == "slr1501",] > > > slide151120 slide151274-2 > > > [1,] 4.977 -4.874 > > > [2,] 4.950 -4.155 > > > [3,] 4.896 -4.649 > > > MA.norm$M[MA.norm$genes["Name"] == "slr1113",] > > > slide151120 slide151274-2 > > > [1,] 2.350 -1.560 > > > [2,] 2.258 -1.605 > > > [3,] 2.398 -1.725 > > > > Thank you very much for your quick response. > > > > Hua Weng > > > > -----Original Message----- > > From: Gordon K Smyth [mailto:smyth at wehi.EDU.AU] > > Sent: Tuesday, November 29, 2005 3:12 PM > > To: Hua Weng > > Subject: Re:Limma Top Table question > > > > Dear Hua, > > > > You don't appear to have sent your question to the bioconductor mailing > list. I suggest you check the email address. > > > > See my questions below. > > > > On Wed, November 30, 2005 7:47 am, Hua Weng wrote: > > > Hello Dr. Smyth and Bioconductor: > > > > > > I have a question about toptable in limma package in Bioconductor. I > > > have confusing about the result after I fit linear model to my data. I > > > have two dye-swap technical replicate slides and three technical > > > replicates within each slide. I wrote a filter function and gave low > > > weights to the spots with low intensity in both channels. The source code > is as following: > > > > > > library(limma) > > > filter <- function(raw, Rcutoff, Rreplace, Gcutoff, Greplace) { files > > > <- dir(path=".", pattern=".gpr") Gfsd <- Rfsd <- NULL ngenes <- > > > length(raw$R[,1]) for(f in files) { skip <- grep("Block", > > > readLines(f, n=-1)) - 1 > > > print(skip) > > > dat <- read.table(f, sep=" ", as.is=TRUE, skip=skip, > header=TRUE, > > > quote = '"', comment.char="", check.names = FALSE, nrows = ngenes) > > > Gfsd<-cbind(Gfsd,as.numeric(dat[,"B635 SD"])) > > > Rfsd<-cbind(Rfsd,as.numeric(dat[,"B532 SD"])) } a <- raw$R - raw$Rb b > > > <- raw$G - raw$Gb e <- raw$R - raw$Rb - 1*Rfsd f <- raw$G - raw$Gb - > > > 1*Gfsd raw$weights[a<rcutoff &="" b<gcutoff]="" <-="" 0.1=""> > > print(raw$weights[618,]) > > > raw$weights[e<rcutoff &="" f<gcutoff]="" <-="" 0.1=""> > > print(raw$weights[618,]) > > > raw } > > > options(digits=4) > > > files <- dir(pattern=".gpr") > > > RG <- read.maimages(files, columns=list(Rf="F532 Mean", Gf="F635 > > > Mean", > > > Rb="B532 Median", Gb="B635 Median"), wt.fun=wtflags(0.1)) RG.filt <- > > > filter(RG, 200, 200, 200, 200) skip <- grep("Row", > > > readLines("slide151120.gpr", n=-1)) - 1 ngenes <- length(RG$R[,1]) > > > z <- read.table("slide151120.gpr",sep=" ", as.is=TRUE, skip=skip, > > > header=TRUE, quote = '"', comment.char="", check.names = FALSE, nrows > > > = > > > ngenes) > > > genes <- data.frame(cbind("Block"=z[,"Block"], > > > "Row"=z[,"Row"],"Column"=z[,"Column"],"Name"=z[,"Name"],"ID"=z[,"ID"]) > > > ) > > > printer <- getLayout(z) > > > RG.filt$printer <- printer > > > RG.filt$genes <- genes > > > RG$genes <- RG.filt$genes > > > RG$printer <- RG.filt$printer > > > MA.norm <- normalizeWithinArrays(RG.filt, method="printtiploess") > > > MA.norm <- normalizeBetweenArrays(MA.norm) design <- c(1,-1) i <- > > > order(genes$Name) geneList <- data.frame(genes$Name[i]) MA.dup <- NULL > > > MA.dup$M <- MA.norm$M[i, 1:2] MA.dup$A <- MA.norm$A[i, 1:2] > > > MA.dup$weights <- MA.norm$weights[i, 1:2] fit <- lmFit(MA.dup, design, > > > weights=MA.norm$weights[i, 1:2], ndups=3) geneList <- > > > uniquegenelist(geneList,ndups=3) eb <- ebayes(fit) x <- > > > toptable(number=length(fit$coefficients), genelist=geneList, fit=fit, > > > A = fit$Amean, eb=eb, adjust="fdr") write.table(x, > > > file="diff_result.txt", sep="\t") > > > > > > The code above works without any error. The following are some display > > > from > > > R: > > > > > > source("C:/project/Ivy/ma.R") > > > Read slide151120.gpr > > > Read slide151274-2.gpr > > > [1] 31 > > > [1] 31 > > > slide151120 slide151274-2 > > > 1 1 > > > slide151120 slide151274-2 > > > 1 1 > > >> x[1:20,] > > > genes.Name.i. M t P.Value B > > > 1853 sll1393 1.1650 26.748 0.0008727 5.960 > > > 2401 slr0146 0.3261 28.124 0.0008727 5.505 > > > 3355 slr1501 4.7499 15.945 0.0099824 4.310 > > > 2918 slr0889 -0.4134 -13.855 0.0160775 3.517 > > > 2054 sll1663 0.4032 12.534 0.0161267 3.118 > > > 1455 sll0800 0.7127 12.443 0.0161267 3.088 > > > 2142 sll1774 0.8550 11.913 0.0161267 3.044 > > > 2410 slr0161 0.1676 11.751 0.0161267 2.980 > > > 968 sll0053 0.3731 11.596 0.0161267 2.976 > > > 3071 slr1113 1.9828 11.480 0.0161267 2.870 > > > 3337 slr1469 0.6812 11.633 0.0161267 2.649 > > > 1337 sll0641 -0.1646 -10.791 0.0205846 2.539 > > > 2537 slr0350 -0.2023 -10.450 0.0206605 2.443 > > > 3073 slr1115 0.9906 10.362 0.0206605 2.347 > > > 4021 ssr1736 0.2674 9.721 0.0240955 2.039 > > > 3338 slr1470 0.6108 9.941 0.0238879 2.004 > > > 2483 slr0273 0.2555 9.604 0.0240955 1.980 > > > 1453 sll0797 0.3010 9.428 0.0240955 1.890 > > > 3069 slr1109 -0.2019 -9.452 0.0240955 1.867 > > > 3850 smr0003 0.4657 9.428 0.0240955 1.856 > > > MA.norm$M[MA.norm$genes["Name"] == "slr1501",] > > > slide151120 slide151274-2 > > > [1,] 4.977 -4.874 > > > [2,] 4.950 -4.155 > > > [3,] 4.896 -4.649 > > > MA.norm$M[MA.norm$genes["Name"] == "slr0146",] > > > slide151120 slide151274-2 > > > [1,] 0.3837 -0.2760 > > > [2,] 0.3677 -0.2824 > > > [3,] 0.3395 -0.2802 > > > MA.norm$M[MA.norm$genes["Name"] == "sll1393",] > > > slide151120 slide151274-2 > > > [1,] 1.114 -1.242 > > > [2,] 1.143 -1.223 > > > [3,] 1.118 -1.150 > > > MA.norm$M[MA.norm$genes["Name"] == "slr1113",] > > > slide151120 slide151274-2 > > > [1,] 2.350 -1.560 > > > [2,] 2.258 -1.605 > > > [3,] 2.398 -1.725 > > >> MA.norm$weights[MA.norm$genes["Name"] == "slr1113",] > > > slide151120 slide151274-2 > > > [1,] 1 1 > > > [2,] 1 1 > > > [3,] 1 1 > > > MA.norm$weights[MA.norm$genes["Name"] == "sll1393",] > > > slide151120 slide151274-2 > > > [1,] 1 1 > > > [2,] 1 1 > > > [3,] 1 1 > > > MA.norm$weights[MA.norm$genes["Name"] == "slr0146",] > > > slide151120 slide151274-2 > > > [1,] 0.1 0.1 > > > [2,] 0.1 0.1 > > > [3,] 1.0 0.1 > > > MA.norm$weights[MA.norm$genes["Name"] == "slr1501",] > > > slide151120 slide151274-2 > > > [1,] 1 1 > > > [2,] 1 1 > > > [3,] 1 1 > > > > > > I am confusing about the output from toptable after I fit ebays > > > function. I think slr0146 with average M value 0.3261 shouldn't appear > > > in top list but it does show up as the second significantly differential > expressed gene. > > > > Why do you think that slr0146 should not appear? > > > > > And > > > gene slr1501 should appear as the first and slr1113 should appear in > > > top five but it doesn't. > > > > Again, what do you think this? > > > > Gordon > > > > > Could you be kind enough to tell me what's wrong in my code? > > > > > > Thanks in advance for your time. > > > > > > Best Regards, > > > Hua Weng > > > > > > Scientific Programmer > > > Microarray Core Facility > > > Oklahoma State University > > > Department of Biochemistry and Molecular Biology > > > 246 Noble Research Center > > > Stillwater, OK 74078 > > > hweng at biochem.okstate.edu > > > (405) 744-6209 > > > FAX (405) 744-7799 > > > http://microarray.okstate.edu/ > > > > > > > > > [[alternative HTML version deleted]] > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor >
ADD COMMENT

Login before adding your answer.

Traffic: 898 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6