Entering edit mode
maxininfa
•
0
@maxininfa-17622
Last seen 6.0 years ago
Hi! I'm trying to follow this guide to analyze this raw ArrayExpress data and I'm stucked really hard at the Identification of DE genes with the "Three groups of samples" example. Personally the data has 4 groups, but it should be the same up to this point.
> f
[1] tumor control haemo ctc
[5] tumor control haemo ctc
[9] tumor control haemo ctc
[13] tumor control haemo ctc
[17] tumor control haemo ctc
[21] tumor control haemo ctc
Levels: tumor control haemo ctc
> design
tumor control haemo ctc
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 0 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 0 1
9 1 0 0 0
10 0 1 0 0
11 0 0 1 0
12 0 0 0 1
13 1 0 0 0
14 0 1 0 0
15 0 0 1 0
16 0 0 0 1
17 1 0 0 0
18 0 1 0 0
19 0 0 1 0
20 0 0 0 1
21 1 0 0 0
22 0 1 0 0
23 0 0 1 0
24 0 0 0 1
attr(,"assign")
[1] 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$f
[1] "contr.treatment"
> data.rma
ExpressionSet (storageMode: lockedEnvironment)
assayData: 54675 features, 24 samples
element names: exprs
protocolData
rowNames: GSM463723.CEL GSM463724.CEL
... GSM463746.CEL (24 total)
varLabels: exprs dates
varMetadata: labelDescription channel
phenoData
rowNames: GSM463723.CEL GSM463724.CEL
... GSM463746.CEL (24 total)
varLabels: index
varMetadata: labelDescription channel
featureData: none
experimentData: use 'experimentData(object)'
Annotation: pd.hg.u133.plus.2
> dim(data.rma)
Features Samples
54675 24
> dim(design)
[1] 24 4
> data.fit = lm.fit(data.rma, design)
Error in lm.fit(data.rma, design) : incompatible dimensions
> data.fit = lm.fit(design, data.rma)
Error in lm.fit(design, data.rma) : incompatible dimensions
I tried switching the order since the lm.fit description has the design as first imput, despite being the opposite on this guide. I don't understand why I'm getting this error given the respective dim() outputs.
> sessionInfo()
R version 3.5.2 (2018-12-20)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.1 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
locale:
[1] LC_CTYPE=en_US.UTF-8
[2] LC_NUMERIC=C
[3] LC_TIME=es_AR.UTF-8
[4] LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=es_AR.UTF-8
[6] LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=es_AR.UTF-8
[8] LC_NAME=C
[9] LC_ADDRESS=C
[10] LC_TELEPHONE=C
[11] LC_MEASUREMENT=es_AR.UTF-8
[12] LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics
[5] grDevices utils datasets methods
[9] base
other attached packages:
[1] pd.hg.u133.plus.2_3.12.0
[2] DBI_1.0.0
[3] RSQLite_2.1.1
[4] oligo_1.46.0
[5] Biostrings_2.50.2
[6] XVector_0.22.0
[7] IRanges_2.16.0
[8] S4Vectors_0.20.1
[9] Biobase_2.42.0
[10] oligoClasses_1.44.0
[11] BiocGenerics_0.28.0
[12] BiocManager_1.30.4
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0
[2] pillar_1.3.1
[3] plyr_1.8.4
[4] compiler_3.5.2
[5] GenomeInfoDb_1.18.1
[6] bitops_1.0-6
[7] iterators_1.0.10
[8] tools_3.5.2
[9] zlibbioc_1.28.0
[10] digest_0.6.18
[11] bit_1.1-14
[12] tibble_2.0.0
[13] gtable_0.2.0
[14] memoise_1.1.0
[15] preprocessCore_1.44.0
[16] lattice_0.20-38
[17] ff_2.2-14
[18] rlang_0.3.1
[19] pkgconfig_2.0.2
[20] Matrix_1.2-15
[21] foreach_1.4.4
[22] DelayedArray_0.8.0
[23] GenomeInfoDbData_1.2.0
[24] affxparser_1.54.0
[25] bit64_0.9-7
[26] grid_3.5.2
[27] BiocParallel_1.16.5
[28] ggplot2_3.1.0
[29] blob_1.1.1
[30] scales_1.0.0
[31] codetools_0.2-16
[32] matrixStats_0.54.0
[33] GenomicRanges_1.34.0
[34] splines_3.5.2
[35] SummarizedExperiment_1.12.0
[36] colorspace_1.3-2
[37] KernSmooth_2.23-15
[38] lazyeval_0.2.1
[39] munsell_0.5.0
[40] RCurl_1.95-4.11
[41] crayon_1.3.4
[42] affyio_1.52.0
Thanks for your time!
OMG, I feel so stupid now xD Thanks!!!