List significant genes on a GO table
1
0
Entering edit mode
@quentin-anstee-1257
Last seen 10.4 years ago
Dear List, Can anyone advise me how to add a list of significant genes onto a gene ontology table so that I can see which of my differentially expressed genes belong to a given GO group? I would like to be able to output a table that looks like: GO_id Description p-value #Genes Gene_ids/symbols GO:12345 Glucose Metabolism 0.0001 34 IDs of the *significant* probes from the affy chip that are in this GO pathway. Having read the vignettes I have been able to generate most of this table but not the last column containing the Affy_Ids (or ideally gene symbols). I would be very grateful if someone could help me out with this. The script I have used so far is attached. Many thanks, Quentin 1. LOAD GENE EXPRESSION ANALYSIS DATA ========================================================= a. This is a three way comparison. Data is normalised, filtered, limma/eBayes to give a MArrayLM package called fit2. 2. LOAD LIBRARIES ========================================================= library(GO) library(GOstats) library(annotate) library(simpleaffy) library(genefilter) library(multtest) library(affy) library(limma) library(gcrma) library(xtable) library(mouse4302) library(mouse4302cdf) library(annaffy) library(Rgraphviz) 3. MAKE COMPARISONS FOR DFFERENTIAL EXPRESSION ========================================================== # B-CONTROL tab<-topTable(fit2,coef=1) # A-CONTROL tab<-topTable(fit2,coef=2) # A-B tab<-topTable(fit2,coef=3) # topTable contains a a default multadjust 4. Do GO ANALYSIS, MAKE FIGURE & MAKE TABLE ========================================================== gn<-as.character(tab$ID) gn LLID<-unlist(mget(gn,mouse4302LOCUSID,ifnotfound=NA)) go<-makeGOGraph(as.character(LLID),"CC",removeRoot=FALSE) go # There are 3 choices for ontology: "MF", "BP" and "CC" a. Plot Graphic ---------------------------------------------------------- att<-list() lab<-rep(nodes(go),length(nodes(go))) names(lab)<-nodes(go) att$label<-lab plot(go,nodeAttrs=att) # Are there more genes at one GO than expected? ---------------------------------------------------------- hyp<-GOHyperG(unique(LLID),lib="mouse4302",what="CC") names(hyp) go.pv<-hyp$pvalues[nodes(go)] go.pv<-sort(go.pv) b. Create Table ---------------------------------------------------------- sig<-go.pv[go.pv<0.05] counts<-hyp$goCounts[names(sig)] terms<-getGOTerm(names(sig))[["CC"]] nch<-nchar(unlist(terms)) terms2<-substr(unlist(terms),1,50) terms3<-paste(terms2,ifelse(nch>50,"...",""),sep="") mat<-matrix(c(names(terms),terms3,round(sig,3),counts),ncol=4,dimnames =list( 1:length(sig),c("GO ID","Term","p-value","# Genes"))) mat write.table(mat,"A_B_GO-Table_CC.txt")
GO affy GO affy • 1.3k views
ADD COMMENT
0
Entering edit mode
@james-w-macdonald-5106
Last seen 2 hours ago
United States
Hi Quentin, Quentin Anstee wrote: > Dear List, > > Can anyone advise me how to add a list of significant genes onto a gene > ontology table so that I can see which of my differentially expressed genes > belong to a given GO group? > > I would like to be able to output a table that looks like: > > GO_id Description p-value > #Genes Gene_ids/symbols > GO:12345 Glucose Metabolism 0.0001 34 > IDs of the *significant* probes from the affy chip that are in this GO > pathway. You can output tables like this using hyperGtable() in the affycoretools package. The last column of your table will be a bit messy because there will be variable numbers of Affy IDs. I prefer a two step approach; do the above table, and then output the probesets for each row (e.g., each significant GO term) in individual HTML or text tables using hyperG2annaffy(), which is also in affycoretools. Note that affycoretools is in the devel repository, so you need R-2.3.0dev to automatically download using e.g., biocLite(). However, there is no dependency on R-2.3.0dev, so you can download from the website and install by hand into any reasonably recent version of R. HTH, Jim > Having read the vignettes I have been able to generate most of this table > but not the last column containing the Affy_Ids (or ideally gene symbols). I > would be very grateful if someone could help me out with this. The script I > have used so far is attached. > > Many thanks, > > Quentin > > 1. LOAD GENE EXPRESSION ANALYSIS DATA > ========================================================= > > a. This is a three way comparison. Data is normalised, filtered, > limma/eBayes to give a MArrayLM package called fit2. > > 2. LOAD LIBRARIES > ========================================================= > > library(GO) > library(GOstats) > library(annotate) > library(simpleaffy) > library(genefilter) > library(multtest) > library(affy) > library(limma) > library(gcrma) > library(xtable) > library(mouse4302) > library(mouse4302cdf) > library(annaffy) > library(Rgraphviz) > > 3. MAKE COMPARISONS FOR DFFERENTIAL EXPRESSION > ========================================================== > # B-CONTROL > tab<-topTable(fit2,coef=1) > # A-CONTROL > tab<-topTable(fit2,coef=2) > # A-B > tab<-topTable(fit2,coef=3) > > # topTable contains a a default multadjust > > 4. Do GO ANALYSIS, MAKE FIGURE & MAKE TABLE > ========================================================== > gn<-as.character(tab$ID) > gn > LLID<-unlist(mget(gn,mouse4302LOCUSID,ifnotfound=NA)) > go<-makeGOGraph(as.character(LLID),"CC",removeRoot=FALSE) > go > > # There are 3 choices for ontology: "MF", "BP" and "CC" > > a. Plot Graphic > ---------------------------------------------------------- > att<-list() > lab<-rep(nodes(go),length(nodes(go))) > names(lab)<-nodes(go) > att$label<-lab > plot(go,nodeAttrs=att) > > # Are there more genes at one GO than expected? > ---------------------------------------------------------- > hyp<-GOHyperG(unique(LLID),lib="mouse4302",what="CC") > names(hyp) > go.pv<-hyp$pvalues[nodes(go)] > go.pv<-sort(go.pv) > > b. Create Table > ---------------------------------------------------------- > sig<-go.pv[go.pv<0.05] > counts<-hyp$goCounts[names(sig)] > terms<-getGOTerm(names(sig))[["CC"]] > nch<-nchar(unlist(terms)) > terms2<-substr(unlist(terms),1,50) > terms3<-paste(terms2,ifelse(nch>50,"...",""),sep="") > mat<-matrix(c(names(terms),terms3,round(sig,3),counts),ncol=4,dimnam es=list( > 1:length(sig),c("GO ID","Term","p-value","# Genes"))) > mat > write.table(mat,"A_B_GO-Table_CC.txt") > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor -- James W. MacDonald, M.S. Biostatistician Affymetrix and cDNA Microarray Core University of Michigan Cancer Center 1500 E. Medical Center Drive 7410 CCGC Ann Arbor MI 48109 734-647-5623
ADD COMMENT
0
Entering edit mode
Hi Jim, That helps a great deal. Thank you very much. Best wishes, Quentin > -----Original Message----- > From: James W. MacDonald [mailto:jmacdon at med.umich.edu] > Sent: 21 February 2006 15:31 > To: Quentin Anstee > Cc: bioconductor at stat.math.ethz.ch > Subject: Re: [BioC] List significant genes on a GO table > > Hi Quentin, > > Quentin Anstee wrote: > > Dear List, > > > > Can anyone advise me how to add a list of significant genes onto a > > gene ontology table so that I can see which of my differentially > > expressed genes belong to a given GO group? > > > > I would like to be able to output a table that looks like: > > > > GO_id Description > p-value > > #Genes Gene_ids/symbols > > GO:12345 Glucose Metabolism > 0.0001 34 > > IDs of the *significant* probes from the affy chip that are > in this GO > > pathway. > > You can output tables like this using hyperGtable() in the > affycoretools package. The last column of your table will be > a bit messy because there will be variable numbers of Affy > IDs. I prefer a two step approach; do the above table, and > then output the probesets for each row (e.g., each > significant GO term) in individual HTML or text tables using > hyperG2annaffy(), which is also in affycoretools. > > Note that affycoretools is in the devel repository, so you > need R-2.3.0dev to automatically download using e.g., > biocLite(). However, there is no dependency on R-2.3.0dev, so > you can download from the website and install by hand into > any reasonably recent version of R. > > HTH, > > Jim > > > > > Having read the vignettes I have been able to generate most of this > > table but not the last column containing the Affy_Ids (or > ideally gene > > symbols). I would be very grateful if someone could help me > out with > > this. The script I have used so far is attached. > > > > Many thanks, > > > > Quentin > > > > 1. LOAD GENE EXPRESSION ANALYSIS DATA > > ========================================================= > > > > a. This is a three way comparison. Data is normalised, filtered, > > limma/eBayes to give a MArrayLM package called fit2. > > > > 2. LOAD LIBRARIES > > ========================================================= > > > > library(GO) > > library(GOstats) > > library(annotate) > > library(simpleaffy) > > library(genefilter) > > library(multtest) > > library(affy) > > library(limma) > > library(gcrma) > > library(xtable) > > library(mouse4302) > > library(mouse4302cdf) > > library(annaffy) > > library(Rgraphviz) > > > > 3. MAKE COMPARISONS FOR DFFERENTIAL EXPRESSION > > ========================================================== > > # B-CONTROL > > tab<-topTable(fit2,coef=1) > > # A-CONTROL > > tab<-topTable(fit2,coef=2) > > # A-B > > tab<-topTable(fit2,coef=3) > > > > # topTable contains a a default multadjust > > > > 4. Do GO ANALYSIS, MAKE FIGURE & MAKE TABLE > > ========================================================== > > gn<-as.character(tab$ID) > > gn > > LLID<-unlist(mget(gn,mouse4302LOCUSID,ifnotfound=NA)) > > go<-makeGOGraph(as.character(LLID),"CC",removeRoot=FALSE) > > go > > > > # There are 3 choices for ontology: "MF", "BP" and "CC" > > > > a. Plot Graphic > > ---------------------------------------------------------- > > att<-list() > > lab<-rep(nodes(go),length(nodes(go))) > > names(lab)<-nodes(go) > > att$label<-lab > > plot(go,nodeAttrs=att) > > > > # Are there more genes at one GO than expected? > > ---------------------------------------------------------- > > hyp<-GOHyperG(unique(LLID),lib="mouse4302",what="CC") > > names(hyp) > > go.pv<-hyp$pvalues[nodes(go)] > > go.pv<-sort(go.pv) > > > > b. Create Table > > ---------------------------------------------------------- > > sig<-go.pv[go.pv<0.05] > > counts<-hyp$goCounts[names(sig)] > > terms<-getGOTerm(names(sig))[["CC"]] > > nch<-nchar(unlist(terms)) > > terms2<-substr(unlist(terms),1,50) > > terms3<-paste(terms2,ifelse(nch>50,"...",""),sep="") > > > mat<-matrix(c(names(terms),terms3,round(sig,3),counts),ncol=4,dimnames > > =list( 1:length(sig),c("GO ID","Term","p-value","# Genes"))) mat > > write.table(mat,"A_B_GO-Table_CC.txt") > > > > _______________________________________________ > > Bioconductor mailing list > > Bioconductor at stat.math.ethz.ch > > https://stat.ethz.ch/mailman/listinfo/bioconductor > > > -- > James W. MacDonald, M.S. > Biostatistician > Affymetrix and cDNA Microarray Core > University of Michigan Cancer Center > 1500 E. Medical Center Drive > 7410 CCGC > Ann Arbor MI 48109 > 734-647-5623 >
ADD REPLY

Login before adding your answer.

Traffic: 618 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6