Dear Bioconductor readers,
My name is Irene and I am trying to analyze a dataset from GEO obtained with an Agilent platform. I have successfully analyzed Agilent data from GEO recently using the information on the limma package. But this time I cannot read the txt files. It seems as if the columns that read.maimages is looking for were not in the txt files or had a different name. If I knew the names of these columns I could provide those with the columns argument of the read.maimages function, but I do not know them.
I would be extremely grateful if you could give me some advice.
Thank you in advance, Irene.
Here is my code:
### Fetching the data
workingDir<-"C:/Users/iroman/Documents/Master_Omics/Project"
setwd(workingDir)
GEO48872<-getGEOSuppFiles("GSE48872",makeDirectory=TRUE, fetch_files = TRUE)
setwd(paste(workingDir,"GSE48872",sep="/"))
untar("GSE48872_RAW.tar", exdir = getwd())
### Targets file
SampleNumber<-c(1,2,3,4,5,6,7)
FileName<-c("GSM1186204_raw_data_ActivatedaOPCs_1.txt","GSM1186205_raw_data_ActivatedaOPCs_2.txt",
            "GSM1186206_raw_data_ActivatedaOPCs_3.txt","GSM1186207_raw_data_ActivatedaOPCs_4.txt",
            "GSM1186208_raw_data_NonactivatedaOPCs_1.txt","GSM1186209_raw_data_NonactivatedaOPCs_2.txt",
            "GSM1186210_raw_data_NonactivatedaOPCs_3.txt")
Condition<-c("Cupri","Cupri","Cupri","Cupri","Ctr","Ctr","Ctr")
designO<-as.data.frame(cbind(SampleNumber,FileName,Condition))
write.table(designO,file="targetsO.txt",sep="\t")
targetsO = readTargets("targetsO.txt")
### Reading the files
rawO = read.maimages(targetsO, source="agilent",green.only=FALSE,ext = "gz",other.columns="gIsWellAboveBG")
#Error in readGenericHeader(fullname, columns = columns, sep = sep) : 
#  Specified column headings not found in file
> traceback()
3: file(file, "r")
2: readGenericHeader(fullname, columns = columns, sep = sep)
1: read.maimages(targetsO, source = "agilent", green.only = FALSE, 
       ext = "gz", other.columns = "gIsWellAboveBG")
Here is the sessionInfo:
R version 3.5.3 (2019-03-11)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=Spanish_Spain.1252  LC_CTYPE=Spanish_Spain.1252    LC_MONETARY=Spanish_Spain.1252
[4] LC_NUMERIC=C                   LC_TIME=Spanish_Spain.1252    
attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
 [1] agilp_3.14.0                         mgug4122a.db_3.2.3                   topGO_2.34.0 
 [4] SparseM_1.77                         graph_1.60.0                         dplyr_0.8.0.1
 [7] sva_3.30.1                           mgcv_1.8-27                          nlme_3.1-137
[10] casper_2.16.1                        a4Base_1.30.0                        a4Core_1.30.0 
[13] a4Preproc_1.30.0                     glmnet_2.0-16                        foreach_1.4.4
[16] Matrix_1.2-15                        multtest_2.38.0                      genefilter_1.64.0
[19] mpm_1.0-22                           KernSmooth_2.23-15                   MASS_7.3-51.1
[22] annaffy_1.54.0                       KEGG.db_3.2.3                        GO.db_3.7.0
[25] ReactomePA_1.26.0                    tidyr_0.8.3                          oligo_1.46.0
[28] Biostrings_2.50.2                    XVector_0.22.0                       oligoClasses_1.44.0
[31] mogene10sttranscriptcluster.db_8.7.0 org.Mm.eg.db_3.7.0                   annotate_1.60.0
[34] XML_3.98-1.19                        AnnotationDbi_1.44.0                 GEOquery_2.50.5
[37] limma_3.38.3                         gplots_3.0.1.1                       scatterplot3d_0.3-41
[40] affyQCReport_1.60.0                  lattice_0.20-38                      affyPLM_1.58.0
[43] preprocessCore_1.44.0                gcrma_2.54.0                         affy_1.60.0
[46] SummarizedExperiment_1.12.0          DelayedArray_0.8.0                   BiocParallel_1.16.6
[49] matrixStats_0.54.0                   Biobase_2.42.0                       GenomicRanges_1.34.0
[52] GenomeInfoDb_1.18.2                  IRanges_2.16.0                       S4Vectors_0.20.1
[55] BiocGenerics_0.28.0                 
loaded via a namespace (and not attached):
  [1] proto_1.0.0              tidyselect_0.2.5         RSQLite_2.1.1            munsell_0.5.0           
  [5] codetools_0.2-16         chron_2.3-53             statmod_1.4.30           colorspace_1.4-1        
  [9] GOSemSim_2.8.0           knitr_1.22               rstudioapi_0.10          DOSE_3.8.2              
 [13] simpleaffy_2.58.0        urltools_1.7.3           GenomeInfoDbData_1.2.0   polyclip_1.10-0         
 [17] bit64_0.9-7              farver_2.0.1             coda_0.19-3              xfun_0.6                
 [21] affxparser_1.54.0        R6_2.4.0                 graphlayouts_0.5.0       VGAM_1.1-2              
 [25] bitops_1.0-6             fgsea_1.8.0              gridGraphics_0.4-1       assertthat_0.2.1        
 [29] scales_1.0.0             ggraph_2.0.0             enrichplot_1.2.0         gtable_0.3.0            
 [33] tidygraph_1.1.2          rlang_0.3.4              splines_3.5.3            rtracklayer_1.42.2      
 [37] lazyeval_0.2.2           europepmc_0.3            checkmate_1.9.1          BiocManager_1.30.4      
 [41] yaml_2.2.0               reshape2_1.4.3           GenomicFeatures_1.34.3   backports_1.1.3         
 [45] qvalue_2.14.1            tools_3.5.3              ggplotify_0.0.4          ggplot2_3.1.1           
 [49] affyio_1.52.0            ff_2.2-14                RColorBrewer_1.1-2       ggridges_0.5.1          
 [53] gsubfn_0.7               Rcpp_1.0.1               plyr_1.8.4               progress_1.2.0          
 [57] zlibbioc_1.28.0          purrr_0.3.2              RCurl_1.95-4.12          prettyunits_1.0.2       
 [61] sqldf_0.4-11             viridis_0.5.1            cowplot_0.9.4            ggrepel_0.8.1           
 [65] cluster_2.0.7-1          magrittr_1.5             data.table_1.12.2        DO.db_2.9               
 [69] triebeard_0.3.0          reactome.db_1.66.0       hms_0.4.2                xtable_1.8-3            
 [73] gaga_2.28.1              gridExtra_2.3            compiler_3.5.3           biomaRt_2.38.0          
 [77] tibble_2.1.1             crayon_1.3.4             DBI_1.0.0                tweenr_1.0.1            
 [81] rappdirs_0.3.1           readr_1.3.1              gdata_2.18.0             igraph_1.2.4.1          
 [85] pkgconfig_2.0.2          rvcheck_0.1.7            GenomicAlignments_1.18.1 xml2_1.2.0              
 [89] EBarrays_2.46.0          stringr_1.4.0            digest_0.6.18            fastmatch_1.1-0         
 [93] curl_3.3                 Rsamtools_1.34.1         gtools_3.8.1             graphite_1.28.2         
 [97] jsonlite_1.6             viridisLite_0.3.0        pillar_1.3.1             httr_1.4.0              
[101] survival_2.43-3          glue_1.3.1               UpSetR_1.4.0             iterators_1.0.10        
[105] bit_1.1-14               ggforce_0.3.1            stringi_1.4.3            blob_1.1.1              
[109] caTools_1.17.1.2         memoise_1.1.0 

Dear Gordon,
Thank you so much for your quick response.
I tried using "genepix" as source but it did not work. Do you know what could be the problem?
Thank you so much, sincerely, Irene.
That's because these are one-color microarrays so you need to specify
green.only=TRUE. I have edited my answer above to reflect this.