SAM and qvalue
1
0
Entering edit mode
@nicolas-servant-1466
Last seen 2.6 years ago
France
Hi all, I have a question about SAM (siggenes) and its adjusted pvalues (qvalues). When i perform SAM on Golub data for a FDR threshold = 5%: FDR=5/100 output<-sam(golub,golub.cl,rand=123,delta=seq(0.1,5,0.05)) res.sum<-summary(output) sum.output <- res.sum at mat.fdr delta<-sum.output[sum.output[,"FDR"]<=FDR,][1,"Delta"] delta.sum<-summary(output,delta) ds.mat.sig <- delta.sum at mat.sig I found 894 significant genes. Row d.value stdev p.value q.value R.fold 1 829 8.165222 0.29582512 0.000000e+00 0.000000e+00 7.2771792 2 2124 7.964784 0.17786969 0.000000e+00 0.000000e+00 3.3953035 3 2600 6.102371 0.19112194 0.000000e+00 0.000000e+00 2.6686992 .... 892 142 -1.689638 0.11912464 3.305801e-02 5.393673e-02 0.8178807 893 864 -1.689047 0.08528524 3.312029e-02 5.393673e-02 0.8312349 894 686 -1.689045 0.20350807 3.312029e-02 5.393673e-02 0.7272737 For a FDR threshold, SAM use the Delta, the cutlow and the cutup values to find significant genes. How can we explain that the last genes of my list have a qvalue bigger than 5% (my FDR threshold) ? I notice that their dstatistics are in the good range (cutlow-cutup), It certainly explains why these genes are significants. Thanks for your help ! Best Regards, Nicolas -- Nicolas Servant Equipe Bioinformatique Institut Curie 26, rue d'Ulm - 75248 Paris Cedex 05 - FRANCE Email: Nicolas.Servant at curie.fr Tel: 01 53 10 70 55 http://bioinfo.curie.fr/
qvalue qvalue • 3.5k views
ADD COMMENT
0
Entering edit mode
@holger-schwender-344
Last seen 10.3 years ago
Hi Nicolas, these differences are due to the differing calculation of the FDR and the q-value. The FDR is computed using the observed and expected d values that fall outside the interval (cutlow, cutup), whereas the q-values are computed as in the R package qvalue and based on the SAM p-value which uses symmetric thresholds, i.e., e.g., (-cutup, cutup). So it can and will happen that not all q-value estimates are smaller than the FDR value if, e.g., |cutup|>|cutlow|. Best, Holger -------- Original-Nachricht -------- Datum: Mon, 06 Nov 2006 16:38:23 +0100 Von: Nicolas Servant <nicolas.servant at="" curie.fr=""> An: Bioconductor <bioconductor at="" stat.math.ethz.ch=""> Betreff: [BioC] SAM and qvalue > Hi all, > > I have a question about SAM (siggenes) and its adjusted pvalues (qvalues). > When i perform SAM on Golub data for a FDR threshold = 5%: > > FDR=5/100 > output<-sam(golub,golub.cl,rand=123,delta=seq(0.1,5,0.05)) > res.sum<-summary(output) > sum.output <- res.sum at mat.fdr > delta<-sum.output[sum.output[,"FDR"]<=FDR,][1,"Delta"] > delta.sum<-summary(output,delta) > ds.mat.sig <- delta.sum at mat.sig > > I found 894 significant genes. > Row d.value stdev p.value q.value R.fold > 1 829 8.165222 0.29582512 0.000000e+00 0.000000e+00 7.2771792 > 2 2124 7.964784 0.17786969 0.000000e+00 0.000000e+00 3.3953035 > 3 2600 6.102371 0.19112194 0.000000e+00 0.000000e+00 2.6686992 > .... > 892 142 -1.689638 0.11912464 3.305801e-02 5.393673e-02 0.8178807 > 893 864 -1.689047 0.08528524 3.312029e-02 5.393673e-02 0.8312349 > 894 686 -1.689045 0.20350807 3.312029e-02 5.393673e-02 0.7272737 > > For a FDR threshold, SAM use the Delta, the cutlow and the cutup values > to find significant genes. > How can we explain that the last genes of my list have a qvalue bigger > than 5% (my FDR threshold) ? > I notice that their dstatistics are in the good range (cutlow- cutup), It > certainly explains why these genes are significants. > > Thanks for your help ! > Best Regards, > > Nicolas > > -- > Nicolas Servant > Equipe Bioinformatique > Institut Curie > 26, rue d'Ulm - 75248 Paris Cedex 05 - FRANCE > > Email: Nicolas.Servant at curie.fr > Tel: 01 53 10 70 55 > http://bioinfo.curie.fr/ > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: > http://news.gmane.org/gmane.science.biology.informatics.conductor --
ADD COMMENT
0
Entering edit mode
Thanks for your answer. If the qvalues are computed as in the R package qvalue, I suppose that the "p.values" column of the results represents the raw pvalues. So where can i found the pvalues adjusted by SAM ? Best, Nicolas Holger Schwender wrote: > Hi Nicolas, > > these differences are due to the differing calculation of the FDR and the q-value. The FDR is computed using the observed and expected d values that fall outside the interval (cutlow, cutup), whereas the q-values are computed as in the R package qvalue and based on the SAM p-value which uses symmetric thresholds, i.e., e.g., (-cutup, cutup). So it can and will happen that not all q-value estimates are smaller than the FDR value if, e.g., |cutup|>|cutlow|. > > Best, > Holger > > -------- Original-Nachricht -------- > Datum: Mon, 06 Nov 2006 16:38:23 +0100 > Von: Nicolas Servant <nicolas.servant at="" curie.fr=""> > An: Bioconductor <bioconductor at="" stat.math.ethz.ch=""> > Betreff: [BioC] SAM and qvalue > > >> Hi all, >> >> I have a question about SAM (siggenes) and its adjusted pvalues (qvalues). >> When i perform SAM on Golub data for a FDR threshold = 5%: >> >> FDR=5/100 >> output<-sam(golub,golub.cl,rand=123,delta=seq(0.1,5,0.05)) >> res.sum<-summary(output) >> sum.output <- res.sum at mat.fdr >> delta<-sum.output[sum.output[,"FDR"]<=FDR,][1,"Delta"] >> delta.sum<-summary(output,delta) >> ds.mat.sig <- delta.sum at mat.sig >> >> I found 894 significant genes. >> Row d.value stdev p.value q.value R.fold >> 1 829 8.165222 0.29582512 0.000000e+00 0.000000e+00 7.2771792 >> 2 2124 7.964784 0.17786969 0.000000e+00 0.000000e+00 3.3953035 >> 3 2600 6.102371 0.19112194 0.000000e+00 0.000000e+00 2.6686992 >> .... >> 892 142 -1.689638 0.11912464 3.305801e-02 5.393673e-02 0.8178807 >> 893 864 -1.689047 0.08528524 3.312029e-02 5.393673e-02 0.8312349 >> 894 686 -1.689045 0.20350807 3.312029e-02 5.393673e-02 0.7272737 >> >> For a FDR threshold, SAM use the Delta, the cutlow and the cutup values >> to find significant genes. >> How can we explain that the last genes of my list have a qvalue bigger >> than 5% (my FDR threshold) ? >> I notice that their dstatistics are in the good range (cutlow- cutup), It >> certainly explains why these genes are significants. >> >> Thanks for your help ! >> Best Regards, >> >> Nicolas >> >> -- >> Nicolas Servant >> Equipe Bioinformatique >> Institut Curie >> 26, rue d'Ulm - 75248 Paris Cedex 05 - FRANCE >> >> Email: Nicolas.Servant at curie.fr >> Tel: 01 53 10 70 55 >> http://bioinfo.curie.fr/ >> >> _______________________________________________ >> Bioconductor mailing list >> Bioconductor at stat.math.ethz.ch >> https://stat.ethz.ch/mailman/listinfo/bioconductor >> Search the archives: >> http://news.gmane.org/gmane.science.biology.informatics.conductor >> > > -- > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor > > . > > -- Nicolas Servant Equipe Bioinformatique Institut Curie 26, rue d'Ulm - 75248 Paris Cedex 05 - FRANCE Email: Nicolas.Servant at curie.fr Tel: 01 53 10 70 55 http://bioinfo.curie.fr/
ADD REPLY
0
Entering edit mode
Hi Nicolas, yes, the p-values in the summary are the raw p-values (in the latest versions of siggenes, they are also referred to as rawp and not p.value anymore). With SAM p-value in my last mail I have meant these raw p-values. There are no SAM adjusted p-values for individual genes. There is "only" the FDR as an error rate for a list of genes. Best, Holger -------- Original-Nachricht -------- Datum: Tue, 07 Nov 2006 18:47:12 +0100 Von: Nicolas Servant <nicolas.servant at="" curie.fr=""> An: Holger Schwender <holger.schw at="" gmx.de=""> Betreff: Re: [BioC] SAM and qvalue > Thanks for your answer. > If the qvalues are computed as in the R package qvalue, I suppose that > the "p.values" column of the results represents the raw pvalues. > So where can i found the pvalues adjusted by SAM ? > Best, > > Nicolas > > Holger Schwender wrote: > > Hi Nicolas, > > > > these differences are due to the differing calculation of the FDR and > the q-value. The FDR is computed using the observed and expected d values > that fall outside the interval (cutlow, cutup), whereas the q-values are > computed as in the R package qvalue and based on the SAM p-value which uses > symmetric thresholds, i.e., e.g., (-cutup, cutup). So it can and will happen > that not all q-value estimates are smaller than the FDR value if, e.g., > |cutup|>|cutlow|. > > > > Best, > > Holger > > > > -------- Original-Nachricht -------- > > Datum: Mon, 06 Nov 2006 16:38:23 +0100 > > Von: Nicolas Servant <nicolas.servant at="" curie.fr=""> > > An: Bioconductor <bioconductor at="" stat.math.ethz.ch=""> > > Betreff: [BioC] SAM and qvalue > > > > > >> Hi all, > >> > >> I have a question about SAM (siggenes) and its adjusted pvalues > (qvalues). > >> When i perform SAM on Golub data for a FDR threshold = 5%: > >> > >> FDR=5/100 > >> output<-sam(golub,golub.cl,rand=123,delta=seq(0.1,5,0.05)) > >> res.sum<-summary(output) > >> sum.output <- res.sum at mat.fdr > >> delta<-sum.output[sum.output[,"FDR"]<=FDR,][1,"Delta"] > >> delta.sum<-summary(output,delta) > >> ds.mat.sig <- delta.sum at mat.sig > >> > >> I found 894 significant genes. > >> Row d.value stdev p.value q.value R.fold > >> 1 829 8.165222 0.29582512 0.000000e+00 0.000000e+00 7.2771792 > >> 2 2124 7.964784 0.17786969 0.000000e+00 0.000000e+00 3.3953035 > >> 3 2600 6.102371 0.19112194 0.000000e+00 0.000000e+00 2.6686992 > >> .... > >> 892 142 -1.689638 0.11912464 3.305801e-02 5.393673e-02 0.8178807 > >> 893 864 -1.689047 0.08528524 3.312029e-02 5.393673e-02 0.8312349 > >> 894 686 -1.689045 0.20350807 3.312029e-02 5.393673e-02 0.7272737 > >> > >> For a FDR threshold, SAM use the Delta, the cutlow and the cutup values > >> to find significant genes. > >> How can we explain that the last genes of my list have a qvalue bigger > >> than 5% (my FDR threshold) ? > >> I notice that their dstatistics are in the good range (cutlow- cutup), > It > >> certainly explains why these genes are significants. > >> > >> Thanks for your help ! > >> Best Regards, > >> > >> Nicolas > >> > >> -- > >> Nicolas Servant > >> Equipe Bioinformatique > >> Institut Curie > >> 26, rue d'Ulm - 75248 Paris Cedex 05 - FRANCE > >> > >> Email: Nicolas.Servant at curie.fr > >> Tel: 01 53 10 70 55 > >> http://bioinfo.curie.fr/ > >> > >> _______________________________________________ > >> Bioconductor mailing list > >> Bioconductor at stat.math.ethz.ch > >> https://stat.ethz.ch/mailman/listinfo/bioconductor > >> Search the archives: > >> http://news.gmane.org/gmane.science.biology.informatics.conductor > >> > > > > -- > > > > _______________________________________________ > > Bioconductor mailing list > > Bioconductor at stat.math.ethz.ch > > https://stat.ethz.ch/mailman/listinfo/bioconductor > > Search the archives: > http://news.gmane.org/gmane.science.biology.informatics.conductor > > > > . > > > > > > > -- > Nicolas Servant > Equipe Bioinformatique > Institut Curie > 26, rue d'Ulm - 75248 Paris Cedex 05 - FRANCE > > Email: Nicolas.Servant at curie.fr > Tel: 01 53 10 70 55 > http://bioinfo.curie.fr/ --
ADD REPLY

Login before adding your answer.

Traffic: 511 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6