code for technical replicates in Limma with affy
0
0
Entering edit mode
@richard-friedman-513
Last seen 10.4 years ago
Dear Bioconductor list members, I am analyzing a dataset with both biological and technical replicates. There is 1 factor with 8 different levels, denoted A-H Biological replicates of a given level are denoted by 1,2, ... Technical replicates corresponding to a given biological replcate are denoted 2a,2b.. I wish to compute the statistics of each of levels B-H)relative to level A. I would greatly appreciate it if someone were to look at the following code and input files and tell me if they are correct. Target file: Name FileName Target A1_xen1_1_1 A1_xen1_1_1.CEL A_xen A2_xen2a_5_2 A2_xen2a_5_2.CEL A_xen A3_xen2b_6_3 A3_xen2b_6_3.CEL A_xen B1_cr1_2_4 B1_cr1_2_4.CEL B_crp B2_cr2a_9_5 B2_cr2a_9_5.CEL B_crp B3_cr2b_10_6 B3_cr2b_10_6.CEL B_crp C1_nod1_3_7 C1_nod1_3_7.CEL C_nod C2_nod2a_11_8 C2_nod2a_11_8.CEL C_nod C3_nod2b_12_9 C3_nod2b_12_9.CEL C_nod D1_fgf1a_17_10 D1_fgf1a_17_10.CEL D_FGF D2_fgf1b_18_11 D2_fgf1b_18_11.CEL D_FGF E1_act1a_19_12 E1_act1a_19_12.CEL E_ACTB E2_act1b_20_13 E2_act1b_20_13.CEL E_ACTB F1_sb1a_7_14 F1_sb1a_7_14.CEL F_SB F2_sb1b_8_15 F2_sb1b_8_15.CEL F_SB G1_crsb1a_13_16 G1_crsb1a_13_16.CEL G_CR_SB G2_crsb1b_14_17 G2_crsb1b_14_17.CEL G_CR_SB H1_ndsb1a_15_18 H1_ndsb1a_15_18.CEL H_ND_SB H2_ndsb1b_16_19 H2_ndsb1b_16_19.CEL H_ND_SB > sessionInfo() R version 2.5.1 (2007-06-27) i386-apple-darwin8.9.1 locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 attached base packages: [1] "splines" "tools" "stats" "graphics" "grDevices" "utils" "datasets" "methods" "base" other attached packages: statmod limma simpleaffy genefilter survival mouse430a2probe mouse430a2 "1.3.0" "2.10.5" "2.10.31" "1.14.1" "2.32" "1.16.2" "1.16.0" mouse430a2cdf annotate annaffy affyPLM gcrma matchprobes affydata "1.16.0" "1.14.1" "1.8.1" "1.12.0" "2.8.1" "1.8.1" "1.11.3" affy affyio KEGG GO Biobase "1.14.2" "1.4.1" "1.16.1" "1.16.0" "1.14.1" > > xen1data<-ReadAffy() > xen1dataeset<-gcrma(xen1data) Adjusting for optical effect...................Done. Computing affinities.Done. Adjusting for non-specific binding...................Done. Normalizing Calculating Expression > xen1data AffyBatch object size of arrays=732x732 features (10 kb) cdf=Mouse430A_2 (22690 affyids) number of samples=19 number of genes=22690 annotation=mouse430a2 notes= > xen1dataeset ExpressionSet (storageMode: lockedEnvironment) assayData: 22690 features, 19 samples element names: exprs phenoData rowNames: A1_xen1_1_1.CEL, A2_xen2a_5_2.CEL, ..., H2_ndsb1b_16_19.CEL (19 total) varLabels and varMetadata: sample: arbitrary numbering featureData featureNames: 1415670_at, 1415671_at, ..., AFFX-r2-P1-cre-5_at (22690 total) varLabels and varMetadata: none experimentData: use 'experimentData(object)' Annotation [1] "mouse430a2" > xen1dataeset(PhenoData) Error: could not find function "xen1dataeset" > PhenoData Error: object "PhenoData" not found > phenoData(xen1dataeset) rowNames: A1_xen1_1_1.CEL, A2_xen2a_5_2.CEL, ..., H2_ndsb1b_16_19.CEL (19 total) varLabels and varMetadata: sample: arbitrary numbering > phenoData(xen1data) rowNames: A1_xen1_1_1.CEL, A2_xen2a_5_2.CEL, ..., H2_ndsb1b_16_19.CEL (19 total) varLabels and varMetadata: sample: arbitrary numbering > pData(xen1data) sample A1_xen1_1_1.CEL 1 A2_xen2a_5_2.CEL 2 A3_xen2b_6_3.CEL 3 B1_cr1_2_4.CEL 4 B2_cr2a_9_5.CEL 5 B3_cr2b_10_6.CEL 6 C1_nod1_3_7.CEL 7 C2_nod2a_11_8.CEL 8 C3_nod2b_12_9.CEL 9 D1_fgf1a_17_10.CEL 10 D2_fgf1b_18_11.CEL 11 E1_act1a_19_12.CEL 12 E2_act1b_20_13.CEL 13 F1_sb1a_7_14.CEL 14 F2_sb1b_8_15.CEL 15 G1_crsb1a_13_16.cel 16 G2_crsb1b_14_17.CEL 17 H1_ndsb1a_15_18.CEL 18 H2_ndsb1b_16_19.CEL 19 > pData(xen1dataeset) sample A1_xen1_1_1.CEL 1 A2_xen2a_5_2.CEL 2 A3_xen2b_6_3.CEL 3 B1_cr1_2_4.CEL 4 B2_cr2a_9_5.CEL 5 B3_cr2b_10_6.CEL 6 C1_nod1_3_7.CEL 7 C2_nod2a_11_8.CEL 8 C3_nod2b_12_9.CEL 9 D1_fgf1a_17_10.CEL 10 D2_fgf1b_18_11.CEL 11 E1_act1a_19_12.CEL 12 E2_act1b_20_13.CEL 13 F1_sb1a_7_14.CEL 14 F2_sb1b_8_15.CEL 15 G1_crsb1a_13_16.cel 16 G2_crsb1b_14_17.CEL 17 H1_ndsb1a_15_18.CEL 18 H2_ndsb1b_16_19.CEL 19 > I think the right ones were read in before as expression same as before. > sampleNames(xen1data) [1] "A1_xen1_1_1.CEL" "A2_xen2a_5_2.CEL" "A3_xen2b_6_3.CEL" "B1_cr1_2_4.CEL" [5] "B2_cr2a_9_5.CEL" "B3_cr2b_10_6.CEL" "C1_nod1_3_7.CEL" "C2_nod2a_11_8.CEL" [9] "C3_nod2b_12_9.CEL" "D1_fgf1a_17_10.CEL" "D2_fgf1b_18_11.CEL" "E1_act1a_19_12.CEL" [13] "E2_act1b_20_13.CEL" "F1_sb1a_7_14.CEL" "F2_sb1b_8_15.CEL" "G1_crsb1a_13_16.cel" [17] "G2_crsb1b_14_17.CEL" "H1_ndsb1a_15_18.CEL" "H2_ndsb1b_16_19.CEL" > targets<-readTargets("xen1.txt") > f<-factor(targets$Target,levels=c("A_xen", "B_crp","C_nod","D_FGF","E_ACTB", + "F_SB","G_CR_SB","H_ND_SB")) > design<-model.matrix(~0+f) > colnames(design)<- c("A_xen","B_crp","C_nod","D_FGF","E_ACTB", "F_SB","G_CR_SB","H_ND_SB") > design A_xen B_crp C_nod D_FGF E_ACTB F_SB G_CR_SB H_ND_SB 1 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 5 0 1 0 0 0 0 0 0 6 0 1 0 0 0 0 0 0 7 0 0 1 0 0 0 0 0 8 0 0 1 0 0 0 0 0 9 0 0 1 0 0 0 0 0 10 0 0 0 1 0 0 0 0 11 0 0 0 1 0 0 0 0 12 0 0 0 0 1 0 0 0 13 0 0 0 0 1 0 0 0 14 0 0 0 0 0 1 0 0 15 0 0 0 0 0 1 0 0 16 0 0 0 0 0 0 1 0 17 0 0 0 0 0 0 1 0 18 0 0 0 0 0 0 0 1 19 0 0 0 0 0 0 0 1 attr(,"assign") [1] 1 1 1 1 1 1 1 1 attr(,"contrasts") attr(,"contrasts")$f [1] "contr.treatment" > biolrep<-c(1,2,2,3,4,4,5,6,6,7,7,8,8,9,9,10,10,11,11) > > corfit<-duplicateCorrelation(xen1dataeset,ndups=1,block=biolrep) Loading required package: statmod Warning message: Too much damping - convergence tolerance not achievable in: glmgam.fit (dx, dy, start = start, tol = tol, maxit = maxit, trace = trace) fit<-lmFit(xen1dataeset,design,block=biolrep,cor=corfit$consensus) > contrast.matrix<- makeContrasts(B_crp- A_xen,C_nod- A_xen, D_FGF - A_xen,E_ACTB - A_xen, F_SB- A_xen, + G_CR_SB- A_xen, H_ND_SB -A_xen,levels=design) contrast.matrix Contrasts Levels B_crp - A_xen C_nod - A_xen D_FGF - A_xen E_ACTB - A_xen F_SB - A_xen G_CR_SB - A_xen H_ND_SB - A_xen A_xen -1 -1 -1 -1 -1 -1 -1 B_crp 1 0 0 0 0 0 0 C_nod 0 1 0 0 0 0 0 D_FGF 0 0 1 0 0 0 0 E_ACTB 0 0 0 1 0 0 0 F_SB 0 0 0 0 1 0 0 G_CR_SB 0 0 0 0 0 1 0 H_ND_SB 0 0 0 0 0 0 1 > fit2<-contrasts.fit(fit,contrast.matrix) > fit3<-eBayes(fit2) > fit3<-eBayes(fit2) > crpMxen<-topTable (fit3,coef=1,number=22690,adjust.method="BH",sort.by="B") write.csv(crpMxen,"crpMxen.csv") same few genes as before. > cnodMxen<-topTable (fit3,coef=2,number=22690,adjust.method="BH",sort.by="B") > write.csv(cnodMxen,"crpMnod.csv") chmaged to nodMxen.csv > fgfMxen<-topTable (fit3,coef=3,number=22690,adjust.method="BH",sort.by="B") > write.csv(fgfMxen,"fgfMxen.csv") > actMxen<-topTable (fit3,coef=4,number=22690,adjust.method="BH",sort.by="B") > write.csv(actMxen,"actMxen.csv") > sbMxen<-topTable (fit3,coef=5,number=22690,adjust.method="BH",sort.by="B") > write.csv(sbMxen,"sbMxen.csv") > g_cr_sbMxen<-topTable (fit3,coef=6,number=22690,adjust.method="BH",sort.by="B") > write.csv(g_cr_sbMxen,"gc_cr_sbMxen.csv") > h_nd_sbMxen<-topTable (fit3,coef=7,number=22690,adjust.method="BH",sort.by="B") > write.csv(h_nd_sbMxen,"h_nd_sbMxen.csv") Thanks and best wishes, Rich ------------------------------------------------------------ Richard A. Friedman, PhD Biomedical Informatics Shared Resource Lecturer Department of Biomedical Informatics Educational Coordinator Center for Computational Biology and Bioinformatics National Center for Multiscale Analysis of Genomic Networks Box 95, Room 130BB or P&S 1-420C Columbia University Medical Center 630 W. 168th St. New York, NY 10032 (212)305-6901 (5-6901) (voice) friedman at cancercenter.columbia.edu http://cancercenter.columbia.edu/~friedman/ In memoriam, John Stewart Williamson
Survival cdf annotate affy limma gcrma matchprobes affyio Survival cdf annotate affy • 1.2k views
ADD COMMENT

Login before adding your answer.

Traffic: 655 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6