extremely low adjusted p-values in regression using limma
0
0
Entering edit mode
@gordon-smyth
Last seen 3 hours ago
WEHI, Melbourne, Australia
Dear Artur, > Message: 14 > Date: Fri, 29 Feb 2008 14:53:40 -0500 > From: "Artur Veloso" <abveloso at="" gmail.com=""> > Subject: [BioC] extremely low adjusted p-values in regression using > limma > To: "Bioconductor List" <bioconductor at="" stat.math.ethz.ch=""> > > Dear all, > > I am trying to run a regression analysis on my microarray data using the > limma and all the genes are showing adjusted p-values lower than 10 ^ - 20, > which points me to some sort of major mistake on the code that I am writing > for this analysis. I searched the limma user's guide and the Bioconductor > mail archive for explanations on how to run regressions on limma but could > not figure out what I was doing wrong from them. You are getting very small p-values because you are testing the intercept equal to zero, which obviously it isn't. All the relevant examples in the User's Guide advise you to use topTable(fit,coef=2), which would solve your problem. > The code that I am using > goes below and any help with it would be extremely appreciated. > Also, is it possible to get the r-squared values for each gene in the > analysis? R-squared is of no interest in ANOVA situations. Even in regression with normally distributed covariates it is of limited interest, because it is just a transformation of the F-statistic. You could express the moderated F-statistic as an Rsquared proportion by: fit2 <- eBayes(fit[,-1]) # remove the intercept df.total <- fit2$df.residual+fit2$df.prior Ratio <- fit2$F*fit$rank/df.total Rsquared <- Ratio/(1+Ratio) Best wishes Gordon > Thank you very much, > > Artur Veloso > Masters in Marine Biology Candidate > College of Charleston, SC, USA > >> concentrations > [1] 9.020 1.740 0.960 9.740 2.460 1.810 1.478 1.380 2.760 0.860 > [11] 2.520 3.950 5.210 1.090 26.760 1.670 0.860 1.340 7.500 5.380 >> regression.design <- model.matrix(~log(concentrations)) >> regression.design > (Intercept) log(concentrations) > 1 1 2.19944433 > 2 1 0.55388511 > 3 1 -0.04082199 > 4 1 2.27624112 > 5 1 0.90016135 > 6 1 0.59332685 > 7 1 0.39068982 > 8 1 0.32208350 > 9 1 1.01523068 > 10 1 -0.15082289 > 11 1 0.92425890 > 12 1 1.37371558 > 13 1 1.65057986 > 14 1 0.08617770 > 15 1 3.28690824 > 16 1 0.51282363 > 17 1 -0.15082289 > 18 1 0.29266961 > 19 1 2.01490302 > 20 1 1.68268837 > attr(,"assign") > [1] 0 1 >> dim(vsn.normalized) > [1] 12426 20 >> data.correlation <- duplicateCorrelation(vsn.normalized,regression.design > ,ndups=2,spacing=1) >> data.regression <- lmFit(vsn.normalized,regression.design > ,ndups=2,spacing=1,correlation=data.correlation$consensus) >> tail(topTable(eBayes(data.regression),number=6200)) > ID > 1808 CV133193 triacylglycerol lipase activity CV_HP_010_Plate_96_B8 > 5545 CD648266 none CV_UNI_001_Plate_96_G6_bottom > 5267 CV088280 integral to membrane CV_HP_009_Plate_96_D9_bottom > 4055 CV133023 none CV_HP_011_Plate_96_D11_bottom > 5935 CV132240 none CV_HP_004_Plate_96_C6_bottom > 4392 AJ565488 none CG_NS1_001_Plate_96_G5_bottom > X.Intercept. log.concentrations. F P.Value > 1808 11.87372 -0.0947231 250.6960 2.810474e-24 > 5545 13.32032 0.1710411 244.8938 4.447522e-24 > 5267 11.13640 -0.1087474 242.2680 5.492360e-24 > 4055 11.03485 -0.1456426 239.7445 6.740600e-24 > 5935 10.69073 0.9076729 235.8741 9.263810e-24 > 4392 11.59845 -0.7217251 234.0277 1.079942e-23 > adj.P.Val > 1808 2.818640e-24 > 5545 4.459725e-24 > 5267 5.506541e-24 > 4055 6.756913e-24 > 5935 9.284731e-24 > 4392 1.082206e-23 > >> sessionInfo() > R version 2.6.1 (2007-11-26) > i386-pc-mingw32 > > locale: > LC_COLLATE=English_United States.1252;LC_CTYPE=English_United > States.1252;LC_MONETARY=English_United > States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252 > > attached base packages: > [1] tools stats graphics grDevices utils datasets methods > base > > other attached packages: > [1] statmod_1.3.3 vsn_3.2.1 affy_1.16.0 > preprocessCore_1.0.0 affyio_1.6.1 > [6] Biobase_1.16.2 limma_2.12.0 > > loaded via a namespace (and not attached): > [1] grid_2.6.1 lattice_0.17-2
Microarray Regression limma Microarray Regression limma • 669 views
ADD COMMENT

Login before adding your answer.

Traffic: 842 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6