Entering edit mode
Wijchers, Patrick
▴
40
@wijchers-patrick-2973
Last seen 10.2 years ago
Dear all,
Forgive me for asking help for such a basic issue. After following a
course
on R and microarray analysis, I am determined to get better at it.
I believe I am very close to at least doing all the basic gene
expression
analysis (and hope to get more experienced from there), but I am
stuck
now at a relatively crucial stage.
My aim is straightforward: to extract sets of upregulated and
downregulated
genes between two conditions from experimental microarray data
obtained
with mouse430_2 arrays.
So, I obtained moderated t-stats after rma preprocessing:
> library(limma)
> design<-model.matrix(~factor(m31_eset$genotype))
> fit<-lmFit(m31_eset, design)
> ebayes<-eBayes(fit)
> etab<-topTable(ebayes, coef=2, number=50, adjust.method="fdr",
p.value=0.05,lfc=0)
> etab
ID logFC AveExpr t P.Value
adj.P.Val
37172 1452877_at -2.1867149 10.604163 -28.094315 4.561519e-10
2.057291e-05
17792 1433486_at -1.7610156 8.260051 -25.770171 9.826099e-10
2.215834e-05
25554 1441248_at -2.0141624 7.457400 -23.580934 2.159235e-09
3.246122e-05
17793 1433487_at -1.5573738 7.662227 -21.945441 4.078449e-09
4.598553e-05
14414 1430108_at -1.9558887 5.105592 -18.933815 1.497980e-08
1.288990e-04
941 1416610_a_at -1.6156069 8.287563 -18.644676 1.714805e-08
1.288990e-04
22672 1438366_x_at -1.6615440 9.385415 -16.024782 6.449002e-08
3.712528e-04
31808 1447502_at -1.9017788 6.208795 -15.986360 6.585269e-08
3.712528e-04
18573 1434267_at -1.3436798 7.025515 -13.057854 3.789018e-07
1.807532e-03
39737 1455442_at -1.4437945 6.134666 -12.972677 4.007742e-07
1.807532e-03
13110 1428804_at -1.1810039 4.567535 -12.800456 4.493937e-07
1.842555e-03
20345 1436039_at -0.9342354 8.330907 -10.566949 2.282503e-06
8.578598e-03
22898 1438592_at -1.5371677 4.240373 -10.361602 2.689797e-06
9.331735e-03
27128 1442822_at 0.7779881 6.374739 10.236780 2.976198e-06
9.587823e-03
21052 1436746_at 0.7136296 8.349428 9.664449 4.799472e-06
1.443073e-02
28394 1444088_at -0.8543858 6.742698 -9.354540 6.279629e-06
1.770110e-02
19280 1434974_at 0.6953667 6.055993 9.044643 8.278120e-06
2.077425e-02
12901 1428595_at -0.9757636 3.665744 -9.042911 8.291091e-06
2.077425e-02
25266 1440960_at 0.8017912 5.218203 8.634198 1.208269e-05
2.868112e-02
9419 1425113_x_at -0.8156575 8.968278 -8.348717 1.585442e-05
3.407913e-02
20142 1435836_at 0.6078861 7.724573 8.347830 1.586798e-05
3.407913e-02
B
37172 6.877374
17792 6.751444
25554 6.602080
17793 6.464845
14414 6.132030
941 6.093091
22672 5.663773
31808 5.656270
18573 4.942105
39737 4.916286
13110 4.863031
20345 4.022656
22898 3.928929
27128 3.870369
The outcome looks fine, with genes with p-values below 0.05,
independent
of fold-change (and genes have been confirmed in 'Resolver').
However, I want separate files for probe sets with logFC>0
(upregulated)
and logFC<0 (downregulated), but the option lfc=0 does not
distinguish
between positive or negative fold change. I have tried lfc>0 and <0,
but the function does not recognise that.
There must be a simple way of obtaining these separate data files,
but I have been banging my head over this for the whole weekend now,
but cannot see the best solution. I have tried all kinds of things
and feel
I am really close, but nothing has done the job. I have also searched
google and the bioconductor FAQs, but to no avail.
Any help is greatly appreciated, I do not want to give up, and I do
not want
to go back to 'Resolver' or 'Genespring' (even though they make some
things
very simple).
Thank you,
Patrick
sessionInfo()
R version 2.7.1 (2008-06-23)
x86_64-unknown-linux-gnu
locale:
LC_CTYPE=en_US.UTF-8;LC_NUMERIC=C;LC_TIME=en_US.UTF-8;LC_COLLATE=en_US
.UTF-8;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_N
AME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTI
FICATION=C
attached base packages:
[1] splines tools stats graphics grDevices utils
datasets
[8] methods base
other attached packages:
[1] vsn_3.6.0 lattice_0.17-8 genefilter_1.20.0
[4] survival_2.34-1 affy_1.18.2 preprocessCore_1.2.1
[7] affyio_1.8.1 Biobase_2.0.1 limma_2.14.5
loaded via a namespace (and not attached):
[1] annotate_1.18.0 AnnotationDbi_1.2.2 DBI_0.2-4
[4] grid_2.7.1 RSQLite_0.6-9
--
Patrick Wijchers
Gene control mechanisms and disease group
MRC Clinical Sciences Centre
Imperial College
Hammersmith Campus
Du Cane Road
London W12 0NN
Phone: +44 (0)20 8383 8317 (lab)
+44 (0)20 8383 8500 (office)
Fax: +44 (0)20 8383 8306
Email: patrick.wijchers@csc.mrc.ac.uk
--
Patrick Wijchers
Gene control mechanisms and disease group
MRC Clinical Sciences Centre
Imperial College
Hammersmith Campus
Du Cane Road
London W12 0NN
Phone: +44 (0)20 8383 8317 (lab)
+44 (0)20 8383 8500 (office)
Fax: +44 (0)20 8383 8306
Email: patrick.wijchers@csc.mrc.ac.uk
[[alternative HTML version deleted]]