Differential anlaysis (limma)
0
0
Entering edit mode
Wei Shi ★ 3.6k
@wei-shi-2183
Last seen 13 hours ago
Australia/Melbourne
Hi Mohamed: It is quite arbitrary to determine the threshold for detection p value when filtering out non-expressed probes. But a cutoff of 0.1 will normally remove 30-40% of all the probes in an experiment from my experience. This cutoff will remove those probes which have intensities not greater than 90% of negative controls. Hope this helps. Cheers, Wei Mohamed lajnef wrote: > Dear Wei, > > Thanks for your messages! > > I found the Detection scores colomns (Detection Pval-which > estimates the probability of a probe being detected above the > background level) in my data. > to detect the probes which do not express, I must remove the probes > that have Pvalue>0.05 in the detection scores colomns before carrying > out differential expression analysis???????????? > > > thank you so much for your help > > Cheers > Mohamed > > 2009/3/31 Wei Shi <shi@wehi.edu.au <mailto:shi@wehi.edu.au="">> > > Hi Mohamed: > > Nonexpressed probes are not those probes which have missing > values. We do not know probes with missing values are expressing > or not. You can use "Detection" scores to try to find those probes > which do not express in all of your arrays and then filter them > out before carrying out differential expression analysis to see if > you can get some DE genes. You should be able to find "Detection" > columns in your expression profiles. > > > Cheers, > Wei > > Mohamed lajnef wrote: >> Dear Wei & Sean, >> >> Sean: result of topTbale >> > gene1 >> ID logFC AveExpr t P.Value >> adj.P.Val B >> 9623 7570474 -0.11659435 4.991279 -3.826220 0.0002074251 >> 0.9999788 0.4950223 >> 43599 5550736 -0.18627341 8.316864 -3.800538 0.0002275799 >> 0.9999788 0.4162686 >> 931 4570630 -0.10900890 4.834441 -3.776569 0.0002480571 >> 0.9999788 0.3431365 >> 20081 5560544 -0.22781231 8.704546 -3.770575 0.0002534446 >> 0.9999788 0.3249047 >> 33970 6280711 -0.08123219 5.013244 -3.521244 0.0006066949 >> 0.9999788 -0.4135212 >> 19419 4010192 -0.09110624 4.903243 -3.516622 0.0006163498 >> 0.9999788 -0.4268336 >> 37533 3290356 0.08945260 4.876439 3.512031 0.0006260841 >> 0.9999788 -0.4400442 >> 10727 1260035 -0.14783999 5.784915 -3.506596 0.0006377940 >> 0.9999788 -0.4556641 >> 9921 2260719 -0.09260158 4.927686 -3.474897 0.0007103085 >> 0.9999788 -0.5463862 >> 17444 6180360 0.08237090 4.932764 3.474807 0.0007105246 >> 0.9999788 -0.5466424 >> >> >> >> Wei: 1) i used beadarray methods( quantile) to normalise the log2 >> transoformed data >> 2) i dont have a missing values in my data! >> >> Thank you again for help >> >> >> >> >> >> >> 2009/3/30 Wei Shi <shi@wehi.edu.au <mailto:shi@wehi.edu.au="">> >> >> Hi Mohamed: >> >> I think you can try two things: >> >> (1) Try alternative normalization methods; >> (2) Remove probes which are not expressing in all your arrays. >> >> Hope this helps. >> >> Cheers, >> Wei >> >> Mohamed lajnef wrote: >> >> Dear All, >> >> I'am using limma package to extract the genes >> diffrentially expressed by 3 >> treatment,my database includes >> >> 48803 genes (rows) and 120 colones (40 replicates per >> treatment),my program >> is as follows: >> >> donne<-exprs(BSData.quantile) >> groups<-as.factor(c(rep("Tem",40),rep("EarlyO",40),rep("LateO",40))) >> design<-model.matrix(~0+groups) >> colnames(design)=levels(groups) >> fit<-lmFit(donne,design) >> cont.matrix<-makeContrasts(TemvsEarlyO=Tem- EarlyO,TemvsLateO=Tem-LateO,EarlyOvsLateO=EarlyO-LateO, >> levels=design) >> fit2<-contrasts.fit(fit, cont.matrix) >> ebfit<-eBayes(fit2) >> gene1<-topTable(ebfit, coef=1) >> gene2<-topTable(ebfit, coef=2) >> gene3<-topTable(ebfit, coef=3) >> >> results<-decideTests(ebfit) # I have a matrix that >> contains only 0 because >> >> in the ligne 26 results <- new("TestResults", >> sign(tstat) * (p < p.value)) >> of decideTests program the condition (p<p.value) is="">> always false in my >> case!! >> something is wrong in my program, but I dont know where?? >> >> Any help would be appreciated. >> >> Regards >> >> [[alternative HTML version deleted]] >> >> _______________________________________________ >> Bioconductor mailing list >> Bioconductor@stat.math.ethz.ch >> <mailto:bioconductor@stat.math.ethz.ch> >> https://stat.ethz.ch/mailman/listinfo/bioconductor >> Search the archives: >> http://news.gmane.org/gmane.science.biology.informatics.conductor >> >> >> > [[alternative HTML version deleted]]
Normalization probe limma beadarray Normalization probe limma beadarray • 1.0k views
ADD COMMENT

Login before adding your answer.

Traffic: 1240 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6