Entering edit mode
Md.Mamunur Rashid
▴
260
@mdmamunur-rashid-3595
Last seen 10.2 years ago
## Experiment with illumina microArrays
96 samples.
There are 3 groups (X,Y,Z)
each group has 96 samples
## Loading all the required libraris
library(lumi)
library(limma)
library(mgcv)
library(lumiHumanAll.db)
library(lumiHumanIDMapping)
library(GOstats)
library(annotate)
library(GO.db)
library(illuminaHumanv3BeadID.db)
## Without converting to NuId
data_96_raw <- lumiR("Sample_Probe_Profile.txt",detectionTh =0.05)
summary(data_96_raw, 'QC')
data_96_E_object <- lumiExpresso(data_96_raw)
## Identifying differentially expressed genes
# Removing un-annotated genes
data_96_Matrix <- exprs(data_96_E)
data_96_probeList <- rownames(data_96_Matrix)
x <- illuminaHumanv3BeadIDSYMBOL
annotated_ids <- mappedkeys(x)
idx<- data_96_probeList %in% annotated_ids
data_96_Matrix<-data_96_Matrix[idx,]
## Creating a design matrix
data_96_sampleType <- c("Y","Y","Y","Y","Y","Z","Z","Z","Y","X","Z","Z
","X","Y","X","Y","Y","Y","Y","Z","Y","Z","Y","Z","X","X","Z","Y","X",
"Z","Y","Z","Z","X","X","Z","Z","Y","Y","Y","Z","Y","Z","Y","Y","X","Y
","X","Z","X","Y","Y","Z","X","Z","Z","Z","X","X","Y","Z","Z","X","Y",
"Y","X","X","Z","Z","Z","X","X","Z","Y","X","X","X","Z","X","X","Y","Y
","X","Z","X","X","X","Z","X","Z","X","Y","Y","Z","Y","X")
data_96_design <- model.matrix(~0+data_96_sampleType)
colnames(data_96_design) <- c('X','Y','Z')
Design Matrix
X Y Z
1 0 1 0
2 0 1 0
3 0 1 0
4 0 1 0
5 0 1 0
6 0 0 1
7 0 0 1
8 0 0 1
9 0 1 0
10 1 0 0
11 0 0 1
12 0 0 1
13 1 0 0
.
.
.
.
96 1 0 0
data_96_fit1 <- lmFit(data_96_Matrix,data_96_design)
data_96.contrast <- makeContrasts (Y-X,Z-Y,Z-X,levels=data_96_design)
Contrasts Matrix
Levels Y - X Z - Y Z - X
C -1 0 -1
I 1 -1 0
S 0 1 1
data_96_fit2 <- contrasts.fit(data_96_fit1,data_96.contrast)
data_96_fit2 <- eBayes(data_96_fit2)
topTable(data_96_fit2,coef=1, adjust="BH")
result <- decideTests(p.value=0.05)
vennDiagram(result)
**********************************************************************
****
topTable(data_96_fit2,coef=1, adjust="BH")
ID logFC AveExpr t P.Value adj.P.Val
B
5517 1300397 0.11999169 6.341387 4.819393 5.453441e-06 0.1555921
3.8059087
6069 3870273 -0.31283278 6.881315 -4.555384 1.552881e-05 0.2215262
2.8294648
23026 5310079 -0.13036276 6.815443 -4.280789 4.449540e-05 0.2890393
1.8509379
17388 5390427 0.25070344 6.487644 4.185116 6.363124e-05 0.2890393
1.5194451
17387 5340240 0.21502145 6.470917 4.152405 7.183003e-05 0.2890393
1.4072650
13729 580364 0.13918530 6.616036 4.151444 7.208548e-05 0.2890393
1.4039803
10224 3460242 -0.17331384 7.322021 -4.148558 7.285831e-05 0.2890393
1.3941133
19894 4610626 0.05532714 6.224477 4.078810 9.414832e-05 0.2890393
1.1570851
4131 6130370 0.05371882 6.177268 4.066616 9.843716e-05 0.2890393
1.1159301
6762 4830255 -0.11130830 6.478843 -4.025402 1.143630e-04 0.2890393
0.9774658
topTable(data_96_fit2,coef=2, adjust="BH")
ID logFC AveExpr t P.Value adj.P.Val
B
1926 70767 -0.13534270 6.625839 -4.250721 0.0000498156 0.846945
1.74279904
197 730671 -0.12151636 7.248196 -3.968852 0.0001402750 0.846945
0.78510309
27388 6040500 -0.06651645 6.145904 -3.918356 0.0001680832 0.846945
0.61838206
6961 1110037 -0.05087288 6.238527 -3.889455 0.0001862930 0.846945
0.52364436
2994 7610202 -0.09374225 7.130537 -3.753356 0.0003004434 0.846945
0.08432137
20403 7210564 -0.05199980 6.220342 -3.742198 0.0003123001 0.846945
0.04880959
17651 4200692 -0.11728191 7.258627 -3.644029 0.0004376044 0.846945
-0.26025698
18244 2000458 -0.05455462 6.210703 -3.591672 0.0005226312 0.846945
-0.42258864
17655 110458 -0.05546275 6.227990 -3.574337 0.0005540729 0.846945
-0.47594401
9425 60239 -0.04479364 6.171825 -3.557422 0.0005864732 0.846945
-0.52782091
**********************************************************************
********
Array Weigh of Raw Data ::
1 2 3 4 5 6 7
8
3.2861102 0.6091478 2.6927503 2.2778201 2.4391841 0.7802437 1.1378995
0.5714981
9 10 11 12 13 14 15
16
0.8091165 0.5260511 0.7565424 0.8354660 0.2929977 0.4950789 0.4512856
0.1283279
17 18 19 20 21 22 23
24
0.6713553 0.6275333 0.5441217 0.2711778 0.7278274 0.3323277 0.5786381
0.7375983
25 26 27 28 29 30 31
32
0.5793944 0.4018671 0.6658730 1.6805341 0.7210032 1.2802383 0.8902326
0.6715769
33 34 35 36 37 38 39
40
0.2959048 0.8854763 0.7587111 1.5067705 0.1766820 0.1639351 0.1739882
0.1833592
41 42 43 44 45 46 47
48
0.2443871 0.2188281 0.2945594 0.2607380 0.3419603 0.5932775 0.3396003
0.7229979
49 50 51 52 53 54 55
56
0.8274153 1.7944800 0.8306203 1.0738534 1.5052515 2.9798751 2.0836544
1.5010941
57 58 59 60 61 62 63
64
2.3827591 2.7575819 1.5967670 3.3397084 2.0576009 2.9660262 3.8417611
1.3469622
65 66 67 68 69 70 71
72
1.7334743 2.7855044 4.5417142 3.2551286 3.9634064 3.8054377 3.8020479
4.2732205
73 74 75 76 77 78 79
80
0.2659556 0.3440704 0.6404601 0.8697107 1.0736648 0.8835502 0.9912724
0.4334270
81 82 83 84 85 86 87
88
0.8801461 1.0309162 2.5352693 1.8366521 2.5501944 4.5388081 4.2603196
1.7665255
89 90 91 92 93 94 95
96
2.5511084 2.3867529 4.0237262 2.1647555 3.3101943 2.5863558 1.8618118
0.2397050
**********************************************************************
*********
Array Weight of normalized Data ::
1 2 3 4 5 6 7
8
0.8908085 1.1978748 1.1454450 1.0215452 1.3605699 0.8141813 1.4172765
1.2958270
9 10 11 12 13 14 15
16
1.0522608 1.2562065 1.3531495 1.1489293 1.0596229 1.1217643 0.9156484
0.6705476
17 18 19 20 21 22 23
24
0.9643412 1.2120423 1.0672521 0.9983735 0.8096782 0.9379575 1.0493924
0.7614746
25 26 27 28 29 30 31
32
1.1573255 1.2735353 1.3795986 0.9499952 1.3602425 1.2549726 1.1772558
1.4158351
33 34 35 36 37 38 39
40
1.3659316 1.0658774 1.3185647 0.9017821 0.7915704 0.6326567 1.0325512
0.6812818
41 42 43 44 45 46 47
48
1.0142990 1.1921695 1.1476346 0.8255798 1.2012711 1.1893762 0.9367947
1.1594407
49 50 51 52 53 54 55
56
1.1072266 1.0561352 0.8488650 1.1756689 1.0554286 0.9326934 1.2836555
0.9665945
57 58 59 60 61 62 63
64
1.3293081 1.3027377 1.3459009 1.2834152 0.9657114 1.0041629 0.8823282
0.6843356
65 66 67 68 69 70 71
72
0.8883121 0.9374396 0.9799943 0.9733364 1.2045700 1.0693506 0.7730626
0.9408430
73 74 75 76 77 78 79
80
0.6685933 1.0492289 0.9952222 0.9690452 1.0150076 1.0148188 0.6687192
0.5641711
81 82 83 84 85 86 87
88
0.7872238 0.8793660 0.8553373 0.9662603 0.6143880 1.0340769 0.9842437
0.6626941
89 90 91 92 93 94 95
96
1.0270788 0.8590296 1.0807271 0.8162435 1.0398548 0.8993595 1.2094240
0.5715857