Loop design - biological, technical replication and contrasts
1
0
Entering edit mode
boczniak767 ▴ 740
@maciej-jonczyk-3945
Last seen 25 days ago
Poland
Hi again, I apologise for replying to my own post, but it helps keep track if someone will be interested. I analysed my data with single channel analysis in limma, according to Chapter 9. of limma usersguide. I changed my targets file (to make it more condensed) and removed suffix which identified biological replication. So my targets looks like: >nt_trg SlideNumber FileName Cy3 Cy5 1 93 c_093_DH_K_vs_DH_CHex.gpr hk hc 2 104 c_104_DH_CH_vs_DH_Kex.gpr hc hk 3 116 c_116_DHK_vs_DHCHex.gpr hk hc 4 16 c_016_DH_C_vs_DH_Kex.gpr hc hk 5 94 c_094_DH_K_vs_DL_Kex.gpr hk lk 6 105 c_105_DL_K_vs_DH_Kex.gpr lk hk 7 117 c_117_DHK_vs_DLKex.gpr hk lk 8 139 c_139_DL_K_vs_DH_Kex.gpr lk hk 9 92 c_092_DL_CH_vs_DL_Kex.gpr lc lk 10 106 c_106_DL_K_vs_DL_CHex.gpr lk lc 11 118 c_118_DLCH_vs_DLKex.gpr lc lk 12 23 c_023_DL_K_vs_DL_Cex.gpr lk lc 13 95 c_095_DL_CH_vs_DH_CHex.gpr lc hc 14 107 c_107_DH_CH_vs_DL_CHex.gpr hc lc 15 119 c_119_DLCH_vs_DHCHex.gpr lc hc 16 136 c_136_DH_C_vs_DL_Cex.gpr hc lc 17 101 c_101_DL_K_vs_DH_CHex.gpr lk hc 18 103 c_103_DH_CH_vs_DL_Kex.gpr hc lk 19 121 c_121_DLK_vs_DHCHex.gpr lk hc 20 15 c_015_DH_C_vs_DL_Kex.gpr hc lk 21 100 c_100_DH_K_vs_DL_CHex.gpr hk lc 22 102 c_102_DL_CH_vs_DH_Kex.gpr lc hk 23 120 c_120_DHK_vs_DLCHex.gpr hk lc 24 140 c_140_DL_C_vs_DH_Kex.gpr lc hk I transform it to apropriate form: >tgr_sc=targetsA2C(nt_trg) >tgr_sc channel.col SlideNumber FileName Target 1.1 1 93 c_093_DH_K_vs_DH_CHex.gpr hk 1.2 2 93 c_093_DH_K_vs_DH_CHex.gpr hc 2.1 1 104 c_104_DH_CH_vs_DH_Kex.gpr hc 2.2 2 104 c_104_DH_CH_vs_DH_Kex.gpr hk 3.1 1 116 c_116_DHK_vs_DHCHex.gpr hk 3.2 2 116 c_116_DHK_vs_DHCHex.gpr hc 4.1 1 16 c_016_DH_C_vs_DH_Kex.gpr hc 4.2 2 16 c_016_DH_C_vs_DH_Kex.gpr hk 5.1 1 94 c_094_DH_K_vs_DL_Kex.gpr hk 5.2 2 94 c_094_DH_K_vs_DL_Kex.gpr lk 6.1 1 105 c_105_DL_K_vs_DH_Kex.gpr lk 6.2 2 105 c_105_DL_K_vs_DH_Kex.gpr hk 7.1 1 117 c_117_DHK_vs_DLKex.gpr hk 7.2 2 117 c_117_DHK_vs_DLKex.gpr lk 8.1 1 139 c_139_DL_K_vs_DH_Kex.gpr lk 8.2 2 139 c_139_DL_K_vs_DH_Kex.gpr hk 9.1 1 92 c_092_DL_CH_vs_DL_Kex.gpr lc 9.2 2 92 c_092_DL_CH_vs_DL_Kex.gpr lk 10.1 1 106 c_106_DL_K_vs_DL_CHex.gpr lk 10.2 2 106 c_106_DL_K_vs_DL_CHex.gpr lc 11.1 1 118 c_118_DLCH_vs_DLKex.gpr lc 11.2 2 118 c_118_DLCH_vs_DLKex.gpr lk 12.1 1 23 c_023_DL_K_vs_DL_Cex.gpr lk 12.2 2 23 c_023_DL_K_vs_DL_Cex.gpr lc 13.1 1 95 c_095_DL_CH_vs_DH_CHex.gpr lc 13.2 2 95 c_095_DL_CH_vs_DH_CHex.gpr hc 14.1 1 107 c_107_DH_CH_vs_DL_CHex.gpr hc 14.2 2 107 c_107_DH_CH_vs_DL_CHex.gpr lc 15.1 1 119 c_119_DLCH_vs_DHCHex.gpr lc 15.2 2 119 c_119_DLCH_vs_DHCHex.gpr hc 16.1 1 136 c_136_DH_C_vs_DL_Cex.gpr hc 16.2 2 136 c_136_DH_C_vs_DL_Cex.gpr lc 17.1 1 101 c_101_DL_K_vs_DH_CHex.gpr lk 17.2 2 101 c_101_DL_K_vs_DH_CHex.gpr hc 18.1 1 103 c_103_DH_CH_vs_DL_Kex.gpr hc 18.2 2 103 c_103_DH_CH_vs_DL_Kex.gpr lk 19.1 1 121 c_121_DLK_vs_DHCHex.gpr lk 19.2 2 121 c_121_DLK_vs_DHCHex.gpr hc 20.1 1 15 c_015_DH_C_vs_DL_Kex.gpr hc 20.2 2 15 c_015_DH_C_vs_DL_Kex.gpr lk 21.1 1 100 c_100_DH_K_vs_DL_CHex.gpr hk 21.2 2 100 c_100_DH_K_vs_DL_CHex.gpr lc 22.1 1 102 c_102_DL_CH_vs_DH_Kex.gpr lc 22.2 2 102 c_102_DL_CH_vs_DH_Kex.gpr hk 23.1 1 120 c_120_DHK_vs_DLCHex.gpr hk 23.2 2 120 c_120_DHK_vs_DLCHex.gpr lc 24.1 1 140 c_140_DL_C_vs_DH_Kex.gpr lc 24.2 2 140 c_140_DL_C_vs_DH_Kex.gpr hk Next, I made design matrix >u=unique(tgr_sc$Target) >f=factor(tgr_sc$Target,levels=u) >design=model.matrix(~0+f) >colnames(design)=u >design hk hc lk lc 1 1 0 0 0 2 0 1 0 0 3 0 1 0 0 4 1 0 0 0 5 1 0 0 0 6 0 1 0 0 7 0 1 0 0 8 1 0 0 0 9 1 0 0 0 10 0 0 1 0 11 0 0 1 0 12 1 0 0 0 13 1 0 0 0 14 0 0 1 0 15 0 0 1 0 16 1 0 0 0 17 0 0 0 1 18 0 0 1 0 19 0 0 1 0 20 0 0 0 1 21 0 0 0 1 22 0 0 1 0 23 0 0 1 0 24 0 0 0 1 25 0 0 0 1 26 0 1 0 0 27 0 1 0 0 28 0 0 0 1 29 0 0 0 1 30 0 1 0 0 31 0 1 0 0 32 0 0 0 1 33 0 0 1 0 34 0 1 0 0 35 0 1 0 0 36 0 0 1 0 37 0 0 1 0 38 0 1 0 0 39 0 1 0 0 40 0 0 1 0 41 1 0 0 0 42 0 0 0 1 43 0 0 0 1 44 1 0 0 0 45 1 0 0 0 46 0 0 0 1 47 0 0 0 1 48 1 0 0 0 attr(,"assign") [1] 1 1 1 1 attr(,"contrasts") attr(,"contrasts")$f [1] "contr.treatment" *Is it correct form my design? I see, that it simply identifies what RNA was hybridized on each array. >corfit=intraspotCorrelation(nt_img_lA,design) > corfit$consensus [1] 0.7341876 >fit=lmscFit(nt_img_lAq,design,correlation=corfit$consensus) I want to get contrasts "hc - hk", "lc - lk", "hc - lc", "hk - lk" and also test effect of line and temperature. To do that I write this command: >contr.matrix=makeContrasts(hc-hk,lc-lk,hc-lc,hk-lk,linia=(hc+hk-lc- lk)/2,temp=(hc+lc-hk-lk)/2,inter=(hc-lc)-(hk-lk),levels=design) * I'm not 100% sure that it's correct. >contr.fit=contrasts.fit(fit,contr.matrix) >contr.fit=eBayes(contr.fit) >wynik=decideTests(contr.fit,method="global",adjust.method="BH",p.valu e=0.05) >summary(wynik) hc - hk lc - lk hc - lc hk - lk linia temp inter -1 5865 5039 3014 2685 3931 7382 1113 0 30922 33433 37177 38480 35896 28364 40776 1 6594 4909 3190 2216 3554 7635 1492
limma limma • 1.1k views
ADD COMMENT
0
Entering edit mode
avehna ▴ 240
@avehna-3930
Last seen 10.2 years ago
Hi Maciej: I have the same problem, I did the same procedure but still I'm getting large numbers for differentially expressed genes. I could reduce this number by defining p.value = 0.01 in decideTests. But I'm not completely sure whether changing the "method" for decideTests and/or pvalue should give better results. I'm looking forward to someone else answer. Best Regards, Avhena 2010/3/2 Maciej Jończyk <mjonczyk@biol.uw.edu.pl> > Hi again, > > I apologise for replying to my own post, but it helps keep track if > someone will be interested. > > I analysed my data with single channel analysis in limma, according to > Chapter 9. of limma usersguide. > > I changed my targets file (to make it more condensed) and removed suffix > which > identified biological replication. So my targets looks like: > > >nt_trg > > SlideNumber FileName Cy3 Cy5 > 1 93 c_093_DH_K_vs_DH_CHex.gpr hk hc > 2 104 c_104_DH_CH_vs_DH_Kex.gpr hc hk > 3 116 c_116_DHK_vs_DHCHex.gpr hk hc > 4 16 c_016_DH_C_vs_DH_Kex.gpr hc hk > 5 94 c_094_DH_K_vs_DL_Kex.gpr hk lk > 6 105 c_105_DL_K_vs_DH_Kex.gpr lk hk > 7 117 c_117_DHK_vs_DLKex.gpr hk lk > 8 139 c_139_DL_K_vs_DH_Kex.gpr lk hk > 9 92 c_092_DL_CH_vs_DL_Kex.gpr lc lk > 10 106 c_106_DL_K_vs_DL_CHex.gpr lk lc > 11 118 c_118_DLCH_vs_DLKex.gpr lc lk > 12 23 c_023_DL_K_vs_DL_Cex.gpr lk lc > 13 95 c_095_DL_CH_vs_DH_CHex.gpr lc hc > 14 107 c_107_DH_CH_vs_DL_CHex.gpr hc lc > 15 119 c_119_DLCH_vs_DHCHex.gpr lc hc > 16 136 c_136_DH_C_vs_DL_Cex.gpr hc lc > 17 101 c_101_DL_K_vs_DH_CHex.gpr lk hc > 18 103 c_103_DH_CH_vs_DL_Kex.gpr hc lk > 19 121 c_121_DLK_vs_DHCHex.gpr lk hc > 20 15 c_015_DH_C_vs_DL_Kex.gpr hc lk > 21 100 c_100_DH_K_vs_DL_CHex.gpr hk lc > 22 102 c_102_DL_CH_vs_DH_Kex.gpr lc hk > 23 120 c_120_DHK_vs_DLCHex.gpr hk lc > 24 140 c_140_DL_C_vs_DH_Kex.gpr lc hk > > > I transform it to apropriate form: > >tgr_sc=targetsA2C(nt_trg) > >tgr_sc > > channel.col SlideNumber FileName Target > 1.1 1 93 c_093_DH_K_vs_DH_CHex.gpr hk > 1.2 2 93 c_093_DH_K_vs_DH_CHex.gpr hc > 2.1 1 104 c_104_DH_CH_vs_DH_Kex.gpr hc > 2.2 2 104 c_104_DH_CH_vs_DH_Kex.gpr hk > 3.1 1 116 c_116_DHK_vs_DHCHex.gpr hk > 3.2 2 116 c_116_DHK_vs_DHCHex.gpr hc > 4.1 1 16 c_016_DH_C_vs_DH_Kex.gpr hc > 4.2 2 16 c_016_DH_C_vs_DH_Kex.gpr hk > 5.1 1 94 c_094_DH_K_vs_DL_Kex.gpr hk > 5.2 2 94 c_094_DH_K_vs_DL_Kex.gpr lk > 6.1 1 105 c_105_DL_K_vs_DH_Kex.gpr lk > 6.2 2 105 c_105_DL_K_vs_DH_Kex.gpr hk > 7.1 1 117 c_117_DHK_vs_DLKex.gpr hk > 7.2 2 117 c_117_DHK_vs_DLKex.gpr lk > 8.1 1 139 c_139_DL_K_vs_DH_Kex.gpr lk > 8.2 2 139 c_139_DL_K_vs_DH_Kex.gpr hk > 9.1 1 92 c_092_DL_CH_vs_DL_Kex.gpr lc > 9.2 2 92 c_092_DL_CH_vs_DL_Kex.gpr lk > 10.1 1 106 c_106_DL_K_vs_DL_CHex.gpr lk > 10.2 2 106 c_106_DL_K_vs_DL_CHex.gpr lc > 11.1 1 118 c_118_DLCH_vs_DLKex.gpr lc > 11.2 2 118 c_118_DLCH_vs_DLKex.gpr lk > 12.1 1 23 c_023_DL_K_vs_DL_Cex.gpr lk > 12.2 2 23 c_023_DL_K_vs_DL_Cex.gpr lc > 13.1 1 95 c_095_DL_CH_vs_DH_CHex.gpr lc > 13.2 2 95 c_095_DL_CH_vs_DH_CHex.gpr hc > 14.1 1 107 c_107_DH_CH_vs_DL_CHex.gpr hc > 14.2 2 107 c_107_DH_CH_vs_DL_CHex.gpr lc > 15.1 1 119 c_119_DLCH_vs_DHCHex.gpr lc > 15.2 2 119 c_119_DLCH_vs_DHCHex.gpr hc > 16.1 1 136 c_136_DH_C_vs_DL_Cex.gpr hc > 16.2 2 136 c_136_DH_C_vs_DL_Cex.gpr lc > 17.1 1 101 c_101_DL_K_vs_DH_CHex.gpr lk > 17.2 2 101 c_101_DL_K_vs_DH_CHex.gpr hc > 18.1 1 103 c_103_DH_CH_vs_DL_Kex.gpr hc > 18.2 2 103 c_103_DH_CH_vs_DL_Kex.gpr lk > 19.1 1 121 c_121_DLK_vs_DHCHex.gpr lk > 19.2 2 121 c_121_DLK_vs_DHCHex.gpr hc > 20.1 1 15 c_015_DH_C_vs_DL_Kex.gpr hc > 20.2 2 15 c_015_DH_C_vs_DL_Kex.gpr lk > 21.1 1 100 c_100_DH_K_vs_DL_CHex.gpr hk > 21.2 2 100 c_100_DH_K_vs_DL_CHex.gpr lc > 22.1 1 102 c_102_DL_CH_vs_DH_Kex.gpr lc > 22.2 2 102 c_102_DL_CH_vs_DH_Kex.gpr hk > 23.1 1 120 c_120_DHK_vs_DLCHex.gpr hk > 23.2 2 120 c_120_DHK_vs_DLCHex.gpr lc > 24.1 1 140 c_140_DL_C_vs_DH_Kex.gpr lc > 24.2 2 140 c_140_DL_C_vs_DH_Kex.gpr hk > > Next, I made design matrix > > >u=unique(tgr_sc$Target) > >f=factor(tgr_sc$Target,levels=u) > >design=model.matrix(~0+f) > >colnames(design)=u > >design > > hk hc lk lc > 1 1 0 0 0 > 2 0 1 0 0 > 3 0 1 0 0 > 4 1 0 0 0 > 5 1 0 0 0 > 6 0 1 0 0 > 7 0 1 0 0 > 8 1 0 0 0 > 9 1 0 0 0 > 10 0 0 1 0 > 11 0 0 1 0 > 12 1 0 0 0 > 13 1 0 0 0 > 14 0 0 1 0 > 15 0 0 1 0 > 16 1 0 0 0 > 17 0 0 0 1 > 18 0 0 1 0 > 19 0 0 1 0 > 20 0 0 0 1 > 21 0 0 0 1 > 22 0 0 1 0 > 23 0 0 1 0 > 24 0 0 0 1 > 25 0 0 0 1 > 26 0 1 0 0 > 27 0 1 0 0 > 28 0 0 0 1 > 29 0 0 0 1 > 30 0 1 0 0 > 31 0 1 0 0 > 32 0 0 0 1 > 33 0 0 1 0 > 34 0 1 0 0 > 35 0 1 0 0 > 36 0 0 1 0 > 37 0 0 1 0 > 38 0 1 0 0 > 39 0 1 0 0 > 40 0 0 1 0 > 41 1 0 0 0 > 42 0 0 0 1 > 43 0 0 0 1 > 44 1 0 0 0 > 45 1 0 0 0 > 46 0 0 0 1 > 47 0 0 0 1 > 48 1 0 0 0 > attr(,"assign") > [1] 1 1 1 1 > attr(,"contrasts") > attr(,"contrasts")$f > [1] "contr.treatment" > > *Is it correct form my design? I see, that it simply identifies what RNA > was hybridized on each array. > > >corfit=intraspotCorrelation(nt_img_lA,design) > > corfit$consensus > [1] 0.7341876 > >fit=lmscFit(nt_img_lAq,design,correlation=corfit$consensus) > > I want to get contrasts "hc - hk", "lc - lk", "hc - lc", "hk - lk" > and also test effect of line and temperature. To do that I write this > command: > > > > >contr.matrix=makeContrasts(hc-hk,lc-lk,hc-lc,hk-lk,linia=(hc+hk-lc- lk)/2,temp=(hc+lc-hk-lk)/2,inter=(hc-lc)-(hk-lk),levels=design) > > * I'm not 100% sure that it's correct. > > >contr.fit=contrasts.fit(fit,contr.matrix) > >contr.fit=eBayes(contr.fit) > > > >wynik=decideTests(contr.fit,method="global",adjust.method="BH",p.va lue=0.05) > >summary(wynik) > hc - hk lc - lk hc - lc hk - lk linia temp inter > -1 5865 5039 3014 2685 3931 7382 1113 > 0 30922 33433 37177 38480 35896 28364 40776 > 1 6594 4909 3190 2216 3554 7635 1492 > > From that it seem that there is a lot of differentially expressed genes. > I feel that it isn't optimal design, here technical and biological > replications > are treated in the same manner, aren't they? > > I've read about "duplicateCorrelation" command, is it possible to > combine it with single channel analysis? > Or I should rewrite target file (add number of replication) and rewrite > contrasts > (e.g. hc-hk change to "((hc1+hc2+hc3+hc4)-(hk1+hk2+hk3+hk4))/4 > )? > > And if I want to include a dye effect, I should only add column with 1's > to my design, right? > > Thank you for reading of my post. > I'd be very grateful for help. I've tried to analyse this data for a > along time > and I think limma is the best choice. > > Yours sincerely, > > Maciej Jończyk > > Maciej Jończyk > Department of Plant Molecular Ecophysiology > Institute of Plant Experimental Biology > Faculty of Biology, University of Warsaw > 02-096 Warszawa, Miecznikowa 1 > > > > ___________________________________ > NOCC, http://nocc.sourceforge.net > > > > > -- > This email was Anti Virus checked by Astaro Security Gateway. > http://www.astaro.com > > _______________________________________________ > Bioconductor mailing list > Bioconductor@stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: > http://news.gmane.org/gmane.science.biology.informatics.conductor > [[alternative HTML version deleted]]
ADD COMMENT
0
Entering edit mode
I also think about lower p-value cutoff (0,01). Below I pasted information about my experimental design (it is from my previus message). I have 2x2 factorial experiment conducted in a loop-design (two-colour data). There are two maize lines (dh7, dl3) and two temperature treatments (cold=c and control=k). Following hybridizations were conducted : dh_c vs dh_k; dh_k vs dl_k; dl_k vs dl_c; dl_c vs dh_c (forming a square on a diagram) and two (diagonal on a diagram), namely: dl_k vs dh_c and dh_k vs dl_c. I have four biological replications of this design, including dye-swap (i.e. two hyb. cy3-cy5 and two cy5-cy3). In each biological replication I have also three technical replications of each RNA source (i.e. in dh_c vs dh_k; dl_c vs dh_c and dl_k vs dh_c, sample dh_c is from the same RNA pool). I don't know how analyse it in limma. I want to get following contrasts: dh_c vs dh_k; dh_k vs dl_k; dl_k vs dl_c; dl_c vs dh_c and include effect of temperature, maize line and interaction. Avehna <avhena at="" gmail.com=""> nadawca : > > Hi Maciej:I have the same problem, I did the same procedure but > > still I'm getting large numbers for differentially expressed > > genes. I could reduce this number by defining p.value = 0.01 in > > decideTests. But I'm not completely sure whether changing the > > "method" for decideTests and/or pvalue should give better results. > > I'm looking forward to someone else answer.Best > > Regards,Avhena2010/3/2 Maciej Jo?czyk <mjonczyk at="" biol.uw.edu.pl=""> Hi > > again, I apologise for replying to my own post, but it helps keep > > track if someone will be interested. I analysed my data with single > > channel analysis in limma, according to Chapter 9. of limma > > usersguide. I changed my targets file (to make it more condensed) > > and removed suffix which identified biological replication. So my > > targets looks like: >nt_trg ? SlideNumber ? ? ? ? ? ? ? > > ? ? FileName Cy3 Cy5 1 ? ? ? ? ? 93 > > ?c_093_DH_K_vs_DH_CHex.gpr ?hk ?hc 2 ? ? ? ? ?104 > > ?c_104_DH_CH_vs_DH_Kex.gpr ?hc ?hk 3 ? ? ? ? ?116 ? > > ?c_116_DHK_vs_DHCHex.gpr ?hk ?hc 4 ? ? ? ? ? 16 ? > > c_016_DH_C_vs_DH_Kex.gpr ?hc ?hk 5 ? ? ? ? ? 94 ? > > c_094_DH_K_vs_DL_Kex.gpr ?hk ?lk 6 ? ? ? ? ?105 ? > > c_105_DL_K_vs_DH_Kex.gpr ?lk ?hk 7 ? ? ? ? ?117 ? ? > > c_117_DHK_vs_DLKex.gpr ?hk ?lk 8 ? ? ? ? ?139 ? > > c_139_DL_K_vs_DH_Kex.gpr ?lk ?hk 9 ? ? ? ? ? 92 > > ?c_092_DL_CH_vs_DL_Kex.gpr ?lc ?lk 10 ? ? ? ? 106 > > ?c_106_DL_K_vs_DL_CHex.gpr ?lk ?lc 11 ? ? ? ? 118 ? > > ?c_118_DLCH_vs_DLKex.gpr ?lc ?lk 12 ? ? ? ? ?23 ? > > c_023_DL_K_vs_DL_Cex.gpr ?lk ?lc 13 ? ? ? ? ?95 > > c_095_DL_CH_vs_DH_CHex.gpr ?lc ?hc 14 ? ? ? ? 107 > > c_107_DH_CH_vs_DL_CHex.gpr ?hc ?lc 15 ? ? ? ? 119 ? > > c_119_DLCH_vs_DHCHex.gpr ?lc ?hc 16 ? ? ? ? 136 ? > > c_136_DH_C_vs_DL_Cex.gpr ?hc ?lc 17 ? ? ? ? 101 > > ?c_101_DL_K_vs_DH_CHex.gpr ?lk ?hc 18 ? ? ? ? 103 > > ?c_103_DH_CH_vs_DL_Kex.gpr ?hc ?lk 19 ? ? ? ? 121 ? > > ?c_121_DLK_vs_DHCHex.gpr ?lk ?hc 20 ? ? ? ? ?15 ? > > c_015_DH_C_vs_DL_Kex.gpr ?hc ?lk 21 ? ? ? ? 100 > > ?c_100_DH_K_vs_DL_CHex.gpr ?hk ?lc 22 ? ? ? ? 102 > > ?c_102_DL_CH_vs_DH_Kex.gpr ?lc ?hk 23 ? ? ? ? 120 ? > > ?c_120_DHK_vs_DLCHex.gpr ?hk ?lc 24 ? ? ? ? 140 ? > > c_140_DL_C_vs_DH_Kex.gpr ?lc ?hk I transform it to apropriate > > form: >tgr_sc=targetsA2C(nt_trg) >tgr_sc ? ? channel.col > > SlideNumber ? ? ? ? ? ? ? ? ? FileName Target 1.1 ? ? ? > > ? ? ?1 ? ? ? ? ?93 ?c_093_DH_K_vs_DH_CHex.gpr ? ? hk 1.2 > > ? ? ? ? ? ?2 ? ? ? ? ?93 ?c_093_DH_K_vs_DH_CHex.gpr ? > > ? hc 2.1 ? ? ? ? ? ?1 ? ? ? ? 104 > > ?c_104_DH_CH_vs_DH_Kex.gpr ? ? hc 2.2 ? ? ? ? ? ?2 ? ? ? > > ? 104 ?c_104_DH_CH_vs_DH_Kex.gpr ? ? hk 3.1 ? ? ? ? ? ?1 > > ? ? ? ? 116 ? ?c_116_DHK_vs_DHCHex.gpr ? ? hk 3.2 ? ? ? > > ? ? ?2 ? ? ? ? 116 ? ?c_116_DHK_vs_DHCHex.gpr ? ? hc 4.1 > > ? ? ? ? ? ?1 ? ? ? ? ?16 ? c_016_DH_C_vs_DH_Kex.gpr ? > > ? hc 4.2 ? ? ? ? ? ?2 ? ? ? ? ?16 ? > > c_016_DH_C_vs_DH_Kex.gpr ? ? hk 5.1 ? ? ? ? ? ?1 ? ? ? ? > > ?94 ? c_094_DH_K_vs_DL_Kex.gpr ? ? hk 5.2 ? ? ? ? ? ?2 ? > > ? ? ? ?94 ? c_094_DH_K_vs_DL_Kex.gpr ? ? lk 6.1 ? ? ? ? > > ? ?1 ? ? ? ? 105 ? c_105_DL_K_vs_DH_Kex.gpr ? ? lk 6.2 ? > > ? ? ? ? ?2 ? ? ? ? 105 ? c_105_DL_K_vs_DH_Kex.gpr ? ? hk > > 7.1 ? ? ? ? ? ?1 ? ? ? ? 117 ? ? c_117_DHK_vs_DLKex.gpr > > ? ? hk 7.2 ? ? ? ? ? ?2 ? ? ? ? 117 ? ? > > c_117_DHK_vs_DLKex.gpr ? ? lk 8.1 ? ? ? ? ? ?1 ? ? ? ? > > 139 ? c_139_DL_K_vs_DH_Kex.gpr ? ? lk 8.2 ? ? ? ? ? ?2 ? > > ? ? ? 139 ? c_139_DL_K_vs_DH_Kex.gpr ? ? hk 9.1 ? ? ? ? ? > > ?1 ? ? ? ? ?92 ?c_092_DL_CH_vs_DL_Kex.gpr ? ? lc 9.2 ? ? > > ? ? ? ?2 ? ? ? ? ?92 ?c_092_DL_CH_vs_DL_Kex.gpr ? ? lk > > 10.1 ? ? ? ? ? 1 ? ? ? ? 106 ?c_106_DL_K_vs_DL_CHex.gpr ? > > ? lk 10.2 ? ? ? ? ? 2 ? ? ? ? 106 > > ?c_106_DL_K_vs_DL_CHex.gpr ? ? lc 11.1 ? ? ? ? ? 1 ? ? ? > > ? 118 ? ?c_118_DLCH_vs_DLKex.gpr ? ? lc 11.2 ? ? ? ? ? 2 > > ? ? ? ? 118 ? ?c_118_DLCH_vs_DLKex.gpr ? ? lk 12.1 ? ? ? > > ? ? 1 ? ? ? ? ?23 ? c_023_DL_K_vs_DL_Cex.gpr ? ? lk 12.2 > > ? ? ? ? ? 2 ? ? ? ? ?23 ? c_023_DL_K_vs_DL_Cex.gpr ? ? > > lc 13.1 ? ? ? ? ? 1 ? ? ? ? ?95 c_095_DL_CH_vs_DH_CHex.gpr > > ? ? lc 13.2 ? ? ? ? ? 2 ? ? ? ? ?95 > > c_095_DL_CH_vs_DH_CHex.gpr ? ? hc 14.1 ? ? ? ? ? 1 ? ? ? > > ? 107 c_107_DH_CH_vs_DL_CHex.gpr ? ? hc 14.2 ? ? ? ? ? 2 ? > > ? ? ? 107 c_107_DH_CH_vs_DL_CHex.gpr ? ? lc 15.1 ? ? ? ? ? > > 1 ? ? ? ? 119 ? c_119_DLCH_vs_DHCHex.gpr ? ? lc 15.2 ? ? ? > > ? ? 2 ? ? ? ? 119 ? c_119_DLCH_vs_DHCHex.gpr ? ? hc 16.1 ? > > ? ? ? ? 1 ? ? ? ? 136 ? c_136_DH_C_vs_DL_Cex.gpr ? ? hc > > 16.2 ? ? ? ? ? 2 ? ? ? ? 136 ? c_136_DH_C_vs_DL_Cex.gpr ? > > ? lc 17.1 ? ? ? ? ? 1 ? ? ? ? 101 > > ?c_101_DL_K_vs_DH_CHex.gpr ? ? lk 17.2 ? ? ? ? ? 2 ? ? ? > > ? 101 ?c_101_DL_K_vs_DH_CHex.gpr ? ? hc 18.1 ? ? ? ? ? 1 ? > > ? ? ? 103 ?c_103_DH_CH_vs_DL_Kex.gpr ? ? hc 18.2 ? ? ? ? > > ? 2 ? ? ? ? 103 ?c_103_DH_CH_vs_DL_Kex.gpr ? ? lk 19.1 ? ? > > ? ? ? 1 ? ? ? ? 121 ? ?c_121_DLK_vs_DHCHex.gpr ? ? lk > > 19.2 ? ? ? ? ? 2 ? ? ? ? 121 ? ?c_121_DLK_vs_DHCHex.gpr > > ? ? hc 20.1 ? ? ? ? ? 1 ? ? ? ? ?15 ? > > c_015_DH_C_vs_DL_Kex.gpr ? ? hc 20.2 ? ? ? ? ? 2 ? ? ? ? > > ?15 ? c_015_DH_C_vs_DL_Kex.gpr ? ? lk 21.1 ? ? ? ? ? 1 ? > > ? ? ? 100 ?c_100_DH_K_vs_DL_CHex.gpr ? ? hk 21.2 ? ? ? ? > > ? 2 ? ? ? ? 100 ?c_100_DH_K_vs_DL_CHex.gpr ? ? lc 22.1 ? ? > > ? ? ? 1 ? ? ? ? 102 ?c_102_DL_CH_vs_DH_Kex.gpr ? ? lc 22.2 > > ? ? ? ? ? 2 ? ? ? ? 102 ?c_102_DL_CH_vs_DH_Kex.gpr ? ? > > hk 23.1 ? ? ? ? ? 1 ? ? ? ? 120 ? > > ?c_120_DHK_vs_DLCHex.gpr ? ? hk 23.2 ? ? ? ? ? 2 ? ? ? ? > > 120 ? ?c_120_DHK_vs_DLCHex.gpr ? ? lc 24.1 ? ? ? ? ? 1 ? > > ? ? ? 140 ? c_140_DL_C_vs_DH_Kex.gpr ? ? lc 24.2 ? ? ? ? > > ? 2 ? ? ? ? 140 ? c_140_DL_C_vs_DH_Kex.gpr ? ? hk Next, I > > made design matrix >u=unique(tgr_sc$Target) > > >f=factor(tgr_sc$Target,levels=u) >design=model.matrix(~0+f) > > >colnames(design)=u >design ? hk hc lk lc 1 ? 1 ?0 ?0 ?0 2 ? > > 0 ?1 ?0 ?0 3 ? 0 ?1 ?0 ?0 4 ? 1 ?0 ?0 ?0 5 ? 1 ?0 ?0 > > ?0 6 ? 0 ?1 ?0 ?0 7 ? 0 ?1 ?0 ?0 8 ? 1 ?0 ?0 ?0 9 ? 1 > > ?0 ?0 ?0 10 ?0 ?0 ?1 ?0 11 ?0 ?0 ?1 ?0 12 ?1 ?0 ?0 ?0 > > 13 ?1 ?0 ?0 ?0 14 ?0 ?0 ?1 ?0 15 ?0 ?0 ?1 ?0 16 ?1 ?0 > > ?0 ?0 17 ?0 ?0 ?0 ?1 18 ?0 ?0 ?1 ?0 19 ?0 ?0 ?1 ?0 20 > > ?0 ?0 ?0 ?1 21 ?0 ?0 ?0 ?1 22 ?0 ?0 ?1 ?0 23 ?0 ?0 ?1 > > ?0 24 ?0 ?0 ?0 ?1 25 ?0 ?0 ?0 ?1 26 ?0 ?1 ?0 ?0 27 ?0 > > ?1 ?0 ?0 28 ?0 ?0 ?0 ?1 29 ?0 ?0 ?0 ?1 30 ?0 ?1 ?0 ?0 > > 31 ?0 ?1 ?0 ?0 32 ?0 ?0 ?0 ?1 33 ?0 ?0 ?1 ?0 34 ?0 ?1 > > ?0 ?0 35 ?0 ?1 ?0 ?0 36 ?0 ?0 ?1 ?0 37 ?0 ?0 ?1 ?0 38 > > ?0 ?1 ?0 ?0 39 ?0 ?1 ?0 ?0 40 ?0 ?0 ?1 ?0 41 ?1 ?0 ?0 > > ?0 42 ?0 ?0 ?0 ?1 43 ?0 ?0 ?0 ?1 44 ?1 ?0 ?0 ?0 45 ?1 > > ?0 ?0 ?0 46 ?0 ?0 ?0 ?1 47 ?0 ?0 ?0 ?1 48 ?1 ?0 ?0 ?0 > > attr(,"assign") [1] 1 1 1 1 attr(,"contrasts") attr(,"contrasts")$f > > [1] "contr.treatment" *Is it correct form my design? I see, that it > > simply identifies what RNA was hybridized on each array. > > >corfit=intraspotCorrelation(nt_img_lA,design) corfit$consensus [1] > > 0.7341876 > > >fit=lmscFit(nt_img_lAq,design,correlation=corfit$consensus) I want > > to get contrasts "hc - hk", "lc - lk", "hc - lc", "hk - lk" and also > > test effect of line and temperature. To do that I write this > > command: > > >contr.matrix=makeContrasts(hc-hk,lc-lk,hc-lc,hk-lk,linia=(hc+hk-lc- lk)/2,temp=(hc+lc-hk-lk)/2,inter=(hc-lc)-(hk-lk),levels=design) > > * I'm not 100% sure that it's correct. > > >contr.fit=contrasts.fit(fit,contr.matrix) > > >contr.fit=eBayes(contr.fit) > > >wynik=decideTests(contr.fit,method="global",adjust.method="BH",p.valu e=0.05) > > >summary(wynik) ? hc - hk lc - lk hc - lc hk - lk linia ?temp > > inter -1 ? ?5865 ? ?5039 ? ?3014 ? ?2685 ?3931 ?7382 > > ?1113 0 ? ?30922 ? 33433 ? 37177 ? 38480 35896 28364 40776 1 > > ? ? 6594 ? ?4909 ? ?3190 ? ?2216 ?3554 ?7635 ?1492 From > > that it seem that there is a lot of differentially expressed genes. > > I feel that it isn't optimal design, here technical and > > biological replications are treated in the same manner, aren't > > they? I've read about "duplicateCorrelation" command, is it > > possible to combine it with single channel analysis? Or I should > > rewrite target file (add number of replication) and rewrite > > contrasts (e.g. hc-hk change to > > "((hc1+hc2+hc3+hc4)-(hk1+hk2+hk3+hk4))/4 )? And if I want to > > include a dye effect, I should only add column with 1's to my > > design, right? Thank you for reading of my post. I'd be very > > grateful for help. I've tried to analyse this data for a along > > time and I think limma is the best choice. Yours sincerely, Maciej > > Jo?czyk Maciej Jo?czyk Department of Plant Molecular > > Ecophysiology Institute of Plant Experimental Biology Faculty of > > Biology, University of Warsaw 02-096 Warszawa, Miecznikowa 1 > > ___________________________________ NOCC, > > http://nocc.sourceforge.net -- This email was Anti Virus checked > > by Astaro Security Gateway. http://www.astaro.com > > _______________________________________________ Bioconductor mailing > > list Bioconductor at stat.math.ethz.ch > > https://stat.ethz.ch/mailman/listinfo/bioconductor Search the > > archives: > > http://news.gmane.org/gmane.science.biology.informatics.conductor Maciej Jo?czyk Department of Plant Molecular Ecophysiology Institute of Plant Experimental Biology Faculty of Biology, University of Warsaw 02-096 Warszawa, Miecznikowa 1 ___________________________________ NOCC, http://nocc.sourceforge.net
ADD REPLY

Login before adding your answer.

Traffic: 593 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6