(no subject)
2
0
Entering edit mode
@ana-staninska-3957
Last seen 10.2 years ago
Dear Bioconductor, I have a simple experiment that I have to analyze in order to find differentially expressed genes. I have 10 biological replicates, and each biological replicate has two technical replicates which appear as dye swapped. So in total I have 20 arrays. Each of the probes are spotted twice on the array (on the left and on the right hand side). I use limma to do my analysis. I know at the moment it is not possible to treat duplicate spots, technical replicates and biological replicates, but I though if I use the duplicateCorrelation function on my duplicate spots, and then to use a contrast matrix to average of all of the Treated vs Non-treated biological samples, I could address all 3 replications. Am I correct? I am sending a copy of my code, if someone could look at it at tell me whether I made somewhere a mistake. Thank you very much in advance, Sincerely Ana Staninska library(limma)> library(statmod)> library(marray)> library(convert)> library(hexbin)> library(gridBase)> library(RColorBrewer)> > targets <- readTargets("Lysi_270705.txt")> > ### Only manually removed ot absent spots are given 0 weight ###> RGa <- read.maimages(targets, source="genepix", wt.fun=wtflags(weight=0, cutoff=-75), other.columns=c("F635 SD","B635 SD","F532 SD","B532 SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))Read LYSI270705_1_200905.gpr Read LYSI270705_1dw_200905.gpr Read LYSI270705_2_200905.gpr Read LYSI270705_2dw_200905.gpr Read LYSI270705_3_121005.gpr Read LYSI270705_3dw_121005.gpr Read LYSI270705_4_121005.gpr Read LYSI270705_4dw_121005.gpr Read LYSI270705_5_121005.gpr Read LYSI270705_5dw__121005.gpr Read LYSI270705_6_121005.gpr Read LYSI270705_6dw__121005.gpr Read LYSI270705_7_151001.gpr Read LYSI270705_7dw_151005.gpr Read LYSI270705_8_151005.gpr Read LYSI270705_8dw_151005.gpr Read LYSI270705_9_151005.gpr Read LYSI270705_9dw_151005.gpr Read LYSI270705_10_151005.gpr Read LYSI270705_10dw_151005.gpr > for(i in 1:nrow(RGa)){+ for(j in 1:ncol(RGa)){+ if(RGa$Rb[i,j]+RGa$R[i,j]+ RGa$G[i,j]+ RGa$Gb[i,j] ==0)+ RGa$weights[i,j]<-0+ }+ }> > ####################################################> ### Background Correction = Normexp + offset 25 ####> ####################################################> > RG <-backgroundCorrect(RGa, method="normexp", , normexp.method="mle", offset=25)Green channelCorrected array 1 Corrected array 2 Corrected array 3 Corrected array 4 Corrected array 5 Corrected array 6 Corrected array 7 Corrected array 8 Corrected array 9 Corrected array 10 Corrected array 11 Corrected array 12 Corrected array 13 Corrected array 14 Corrected array 15 Corrected array 16 Corrected array 17 Corrected array 18 Corrected array 19 Corrected array 20 Red channelCorrected array 1 Corrected array 2 Corrected array 3 Corrected array 4 Corrected array 5 Corrected array 6 Corrected array 7 Corrected array 8 Corrected array 9 Corrected array 10 Corrected array 11 Corrected array 12 Corrected array 13 Corrected array 14 Corrected array 15 Corrected array 16 Corrected array 17 Corrected array 18 Corrected array 19 Corrected array 20 > ####################################################> ##### normalize Within arrays #########> ####################################################> > MA <-normalizeWithinArrays(RG, method="loess")> > ####################################################> ###### Contrast Matrix ############> ####################################################> > design<-cbind( + MU1vsWT1=c( 1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU2vsWT2=c(0,0, 1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU3vsWT3=c(0,0,0,0, 1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU4vsWT4=c(0,0,0,0,0,0, 1,-1,0,0,0,0,0,0,0,0,0,0,0,0),+ MU5vsWT5=c(0,0,0,0,0,0,0,0, 1,-1,0,0,0,0,0,0,0,0,0,0),+ MU6vsWT6=c(0,0,0,0,0,0,0,0,0,0, 1,-1,0,0,0,0,0,0,0,0), + MU7vsWT7=c(0,0,0,0,0,0,0,0,0,0,0,0, 1,-1,0,0,0,0,0,0),+ MU8vsWT8=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,-1,0,0,0,0),+ MU9vsWT9=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,-1,0,0),+ MU10vsWT10=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,-1))> > cont.matrix <- makeContrasts(MUvsWT=(MU1vsWT1+MU2vsWT2+MU3vsWT3+MU4vsW T4+MU5vsWT5+MU6vsWT6+MU7vsWT7+MU8vsWT8+MU9vsWT9+MU10vsWT10)/10, levels=design)> > ####################################################> ### Duplicate Correlations on duplicate spots ####> ####################################################> > corfit<-duplicateCorrelation(MA, ndups=2, spacing=192)> > ####################################################> ##### Linear Fit Model and Contrasts fit #######> ####################################################> > fit<-lmFit(MA, design, ndups=2, spacing=192, cor=corfit$consensus)> > fit<-contrasts.fit(fit, cont.matrix)> > ####################################################> ######### eBayes Statistics ###############> ####################################################> > fit<-eBayes(fit)> > ##############################################################> ### Writing the Results ######> ##############################################################> TTnew<-topTable(fit,coef=1, number=100, adjust="BH") Ana StaninskaHelmholtz-Zentrum MuenchenDepartment of Scientific ComputingNeuherberg, Deutschland+49 (0) 89 3187 2656 [[alternative HTML version deleted]]
limma limma • 2.0k views
ADD COMMENT
0
Entering edit mode
Naomi Altman ★ 6.0k
@naomi-altman-380
Last seen 3.6 years ago
United States
The estimated error variance used for the test denominator will be an average of technical and biological replication, and therefore not really appropriate for your analysis. However, you could average the 2 technical replicates prior to running limma which would give you the right error structure. --Naomi At 12:04 PM 3/12/2010, Ana Staninska wrote: >Dear Bioconductor, >I have a simple experiment that I have to analyze in order to find >differentially expressed genes. I have 10 biological replicates, and >each biological replicate has two technical replicates which appear >as dye swapped. So in total I have 20 arrays. Each of the probes are >spotted twice on the array (on the left and on the right hand side). >I use limma to do my analysis. I know at the moment it is not >possible to treat duplicate spots, technical replicates and >biological replicates, but I though if I use the >duplicateCorrelation function on my duplicate spots, and then to use >a contrast matrix to average of all of the Treated vs Non-treated >biological samples, I could address all 3 replications. Am I correct? > > >I am sending a copy of my code, if someone could look at it at tell >me whether I made somewhere a mistake. >Thank you very much in advance, >Sincerely Ana Staninska > > > library(limma)> library(statmod)> library(marray)> > library(convert)> library(hexbin)> library(gridBase)> > library(RColorBrewer)> > targets <- > readTargets("Lysi_270705.txt")> > ### Only manually removed ot > absent spots are given 0 weight ###> RGa <- read.maimages(targets, > source="genepix", wt.fun=wtflags(weight=0, > cutoff=-75), other.columns=c("F635 SD","B635 SD","F532 SD","B532 > SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))Read > LYSI270705_1_200905.gpr Read LYSI270705_1dw_200905.gpr Read > LYSI270705_2_200905.gpr Read LYSI270705_2dw_200905.gpr Read > LYSI270705_3_121005.gpr Read LYSI270705_3dw_121005.gpr Read > LYSI270705_4_121005.gpr Read LYSI270705_4dw_121005.gpr Read > LYSI270705_5_121005.gpr Read LYSI270705_5dw__121005.gpr Read > LYSI270705_6_121005.gpr Read LYSI270705_6dw__121005.gpr Read > LYSI270705_7_151001.gpr Read LYSI270705_7dw_151005.gpr Read > LYSI270705_8_151005.gpr Read LYSI270705_8dw_151005.gpr Read > LYSI270705_9_151005.gpr Read LYSI270705_9dw_151005.gpr Read LYSI270705! > _10_151005.gpr Read LYSI270705_10dw_151005.gpr > for(i in > 1:nrow(RGa)){+ for(j in > 1:ncol(RGa)){+ if(RGa$Rb[i,j]+RGa$R[i,j]+ RGa$G[i,j]+ > RGa$Gb[i,j] ==0)+ RGa$weights[i,j]<-0+ }+ }> > > ####################################################> ### > Background Correction = Normexp + offset 25 ####> > ####################################################> > RG > <-backgroundCorrect(RGa, method="normexp", , normexp.method="mle", > offset=25)Green channelCorrected array 1 Corrected array 2 > Corrected array 3 Corrected array 4 Corrected array 5 Corrected > array 6 Corrected array 7 Corrected array 8 Corrected array 9 > Corrected array 10 Corrected array 11 Corrected array 12 Corrected > array 13 Corrected array 14 Corrected array 15 Corrected array 16 > Corrected array 17 Corrected array 18 Corrected array 19 Corrected > array 20 Red channelCorrected array 1 Corrected array 2 Corrected > array 3 Corrected array 4 Corrected array 5 Corrected array 6 > Corrected array 7 Corrected array 8 Corrected array ! > 9 Corrected array 10 Corrected array 11 Corrected array 12 Corrected a >rray 13 Corrected array 14 Corrected array 15 Corrected array 16 >Corrected array 17 Corrected array 18 Corrected array 19 Corrected >array 20 > ####################################################> >##### normalize Within arrays #########> >####################################################> > MA ><-normalizeWithinArrays(RG, method="loess")> > >####################################################> ###### >Contrast Matrix ############> >####################################################> > >design<-cbind( + MU1vsWT1=c( >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU2vsWT2=c(0,0, >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU3vsWT3=c(0,0,0,0, >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU4vsWT4=c(0,0,0,0,0,0, >1,-1,0,0,0,0,0,0,0,0,0,0,0,0),+ MU5vsWT5=c(0,0,0,0,0,0,0,0, >1,-1,0,0,0,0,0,0,0,0,0,0),+ MU6vsWT6=c(0,0,0,0,0,0,0,0,0,0, >1,-1,0,0,0,0,0,0,0,0), >+ MU7vsWT7=c(0,0,0,0,0,0,0,0,0,0! > ,0,0, > 1,-1,0,0,0,0,0,0),+ MU8vsWT8=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 1,-1,0,0,0,0),+ MU9vsWT9=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 1,-1,0,0),+ MU10vsWT10=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > 1,-1))> > cont.matrix <- > makeContrasts(MUvsWT=(MU1vsWT1+MU2vsWT2+MU3vsWT3+MU4vsWT4+MU5vsWT5+M U6vsWT6+MU7vsWT7+MU8vsWT8+MU9vsWT9+MU10vsWT10)/10, > levels=design)> > > ####################################################> > ### Duplicate Correlations on duplicate spots ####> > ####################################################> > > corfit<-duplicateCorrelation(MA, ndups=2, spacing=192)> > > ####################################################> ##### Linear > Fit Model and Contrasts fit #######> > ####################################################> > > fit<-lmFit(MA, design, ndups=2, spacing=192, > cor=corfit$consensus)> > fit<-contrasts.fit(fit, cont.matrix)> > > ####################################################> > ######### eBayes Statistics ###############> #################! > ###################################> > fit<-eBayes(fit)> > ########### >###################################################> ### Writing >the Results ######> >##############################################################> >TTnew<-topTable(fit,coef=1, number=100, adjust="BH") > > >Ana StaninskaHelmholtz-Zentrum MuenchenDepartment of Scientific >ComputingNeuherberg, Deutschland+49 (0) 89 3187 2656 > > [[alternative HTML version deleted]] > >_______________________________________________ >Bioconductor mailing list >Bioconductor at stat.math.ethz.ch >https://stat.ethz.ch/mailman/listinfo/bioconductor >Search the archives: >http://news.gmane.org/gmane.science.biology.informatics.conductor Naomi S. Altman 814-865-3791 (voice) Associate Professor Dept. of Statistics 814-863-7114 (fax) Penn State University 814-865-1348 (Statistics) University Park, PA 16802-2111
ADD COMMENT
0
Entering edit mode
Dear Naomi, Thank you very much for your answer. I just have few follow up question. How big should be the correlation on my duplicate spots in order to "safetly" average them?Before the normalization, the correlation on my duplicate spots is around 0.7-0.8, but after normalizationit is only around 0.4-0.6. Which I think it is not the best. Probably I should mention that the correlation of dye swapped arrays is around -0.2. Also, for some of the experiments, we had to remove certain arrays, and therefore not all of my biological replicates are dye swapped. In that case I think I should use the contrast matrix to average of the treated vs non-treated comparisons. Isn't then better to use the corfit$consensus on my duplicate spots? Thank you very much in advance, All the best, Ana > Date: Fri, 12 Mar 2010 12:28:06 -0500 > To: staninska@hotmail.com; bioconductor@stat.math.ethz.ch > From: naomi@stat.psu.edu > Subject: Re: [BioC] (no subject) > > The estimated error variance used for the test denominator will be an > average of technical and biological replication, and therefore not > really appropriate for your analysis. However, you could average the > 2 technical replicates prior to running limma which would give you > the right error structure. > > --Naomi > > At 12:04 PM 3/12/2010, Ana Staninska wrote: > > >Dear Bioconductor, > >I have a simple experiment that I have to analyze in order to find > >differentially expressed genes. I have 10 biological replicates, and > >each biological replicate has two technical replicates which appear > >as dye swapped. So in total I have 20 arrays. Each of the probes are > >spotted twice on the array (on the left and on the right hand side). > >I use limma to do my analysis. I know at the moment it is not > >possible to treat duplicate spots, technical replicates and > >biological replicates, but I though if I use the > >duplicateCorrelation function on my duplicate spots, and then to use > >a contrast matrix to average of all of the Treated vs Non-treated > >biological samples, I could address all 3 replications. Am I correct? > > > > > >I am sending a copy of my code, if someone could look at it at tell > >me whether I made somewhere a mistake. > >Thank you very much in advance, > >Sincerely Ana Staninska > > > > > > library(limma)> library(statmod)> library(marray)> > > library(convert)> library(hexbin)> library(gridBase)> > > library(RColorBrewer)> > targets <- > > readTargets("Lysi_270705.txt")> > ### Only manually removed ot > > absent spots are given 0 weight ###> RGa <- read.maimages(targets, > > source="genepix", wt.fun=wtflags(weight=0, > > cutoff=-75), other.columns=c("F635 SD","B635 SD","F532 SD","B532 > > SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))Read > > LYSI270705_1_200905.gpr Read LYSI270705_1dw_200905.gpr Read > > LYSI270705_2_200905.gpr Read LYSI270705_2dw_200905.gpr Read > > LYSI270705_3_121005.gpr Read LYSI270705_3dw_121005.gpr Read > > LYSI270705_4_121005.gpr Read LYSI270705_4dw_121005.gpr Read > > LYSI270705_5_121005.gpr Read LYSI270705_5dw__121005.gpr Read > > LYSI270705_6_121005.gpr Read LYSI270705_6dw__121005.gpr Read > > LYSI270705_7_151001.gpr Read LYSI270705_7dw_151005.gpr Read > > LYSI270705_8_151005.gpr Read LYSI270705_8dw_151005.gpr Read > > LYSI270705_9_151005.gpr Read LYSI270705_9dw_151005.gpr Read LYSI270705! > > _10_151005.gpr Read LYSI270705_10dw_151005.gpr > for(i in > > 1:nrow(RGa)){+ for(j in > > 1:ncol(RGa)){+ if(RGa$Rb[i,j]+RGa$R[i,j]+ RGa$G[i,j]+ > > RGa$Gb[i,j] ==0)+ RGa$weights[i,j]<-0+ }+ }> > > > ####################################################> ### > > Background Correction = Normexp + offset 25 ####> > > ####################################################> > RG > > <-backgroundCorrect(RGa, method="normexp", , normexp.method="mle", > > offset=25)Green channelCorrected array 1 Corrected array 2 > > Corrected array 3 Corrected array 4 Corrected array 5 Corrected > > array 6 Corrected array 7 Corrected array 8 Corrected array 9 > > Corrected array 10 Corrected array 11 Corrected array 12 Corrected > > array 13 Corrected array 14 Corrected array 15 Corrected array 16 > > Corrected array 17 Corrected array 18 Corrected array 19 Corrected > > array 20 Red channelCorrected array 1 Corrected array 2 Corrected > > array 3 Corrected array 4 Corrected array 5 Corrected array 6 > > Corrected array 7 Corrected array 8 Corrected array ! > > 9 Corrected array 10 Corrected array 11 Corrected array 12 Corrected a > >rray 13 Corrected array 14 Corrected array 15 Corrected array 16 > >Corrected array 17 Corrected array 18 Corrected array 19 Corrected > >array 20 > ####################################################> > >##### normalize Within arrays #########> > >####################################################> > MA > ><-normalizeWithinArrays(RG, method="loess")> > > >####################################################> ###### > >Contrast Matrix ############> > >####################################################> > > >design<-cbind( + MU1vsWT1=c( > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU2vsWT2=c(0,0, > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU3vsWT3=c(0,0,0,0, > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU4vsWT4=c(0,0,0,0,0,0, > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0),+ MU5vsWT5=c(0,0,0,0,0,0,0,0, > >1,-1,0,0,0,0,0,0,0,0,0,0),+ MU6vsWT6=c(0,0,0,0,0,0,0,0,0,0, > >1,-1,0,0,0,0,0,0,0,0), > >+ MU7vsWT7=c(0,0,0,0,0,0,0,0,0,0! > > ,0,0, > > 1,-1,0,0,0,0,0,0),+ MU8vsWT8=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > 1,-1,0,0,0,0),+ MU9vsWT9=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > 1,-1,0,0),+ MU10vsWT10=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > 1,-1))> > cont.matrix <- > > > > ####################################################> > > ### Duplicate Correlations on duplicate spots ####> > > ####################################################> > > > corfit<-duplicateCorrelation(MA, ndups=2, spacing=192)> > > > ####################################################> ##### Linear > > Fit Model and Contrasts fit #######> > > ####################################################> > > > fit<-lmFit(MA, design, ndups=2, spacing=192, > > cor=corfit$consensus)> > fit<-contrasts.fit(fit, cont.matrix)> > > > ####################################################> > > ######### eBayes Statistics ###############> #################! > > ###################################> > fit<-eBayes(fit)> > ########### > >###################################################> ### Writing > >the Results ######> > >##############################################################> > >TTnew<-topTable(fit,coef=1, number=100, adjust="BH") > > > > > >Ana StaninskaHelmholtz-Zentrum MuenchenDepartment of Scientific > >ComputingNeuherberg, Deutschland+49 (0) 89 3187 2656 > > > > [[alternative HTML version deleted]] > > > >_______________________________________________ > >Bioconductor mailing list > >Bioconductor@stat.math.ethz.ch > >https://stat.ethz.ch/mailman/listinfo/bioconductor > >Search the archives: > >http://news.gmane.org/gmane.science.biology.informatics.conductor > > Naomi S. Altman 814-865-3791 (voice) > Associate Professor > Dept. of Statistics 814-863-7114 (fax) > Penn State University 814-865-1348 (Statistics) > University Park, PA 16802-2111 > [[alternative HTML version deleted]]
ADD REPLY
0
Entering edit mode
Dear Ana, I actually meant that you should average dye swaps, not spots, although either is OK as long as you use corfit for the other. If there are no technical replicates for some biological reps, the analysis is much more complicated. This really requires a statistical consultant and someone who will do some detailed preliminary analyses. Naomi p.s. I hope that the correlation of -0.2 for the dye swaps is for R-G. If it is for treatment A - treatment B, you have a problem. At 03:08 PM 3/12/2010, Ana Staninska wrote: >Dear Naomi, > >Thank you very much for your answer. I just have few follow up question. > >How big should be the correlation on my duplicate spots in order to >"safetly" average them? >Before the normalization, the correlation on my duplicate spots is >around 0.7-0.8, but after normalization >it is only around 0.4-0.6. Which I think it is not the best. >Probably I should mention that the correlation of dye swapped arrays >is around -0.2. > >Also, for some of the experiments, we had to remove certain arrays, >and therefore not all of my biological replicates are dye swapped. >In that case I think I should use the contrast matrix to average of >the treated vs non-treated comparisons. >Isn't then better to use the corfit$consensus on my duplicate spots? > >Thank you very much in advance, > >All the best, >Ana > > > > > > > Date: Fri, 12 Mar 2010 12:28:06 -0500 > > To: staninska at hotmail.com; bioconductor at stat.math.ethz.ch > > From: naomi at stat.psu.edu > > Subject: Re: [BioC] (no subject) > > > > The estimated error variance used for the test denominator will be an > > average of technical and biological replication, and therefore not > > really appropriate for your analysis. However, you could average the > > 2 technical replicates prior to running limma which would give you > > the right error structure. > > > > --Naomi > > > > At 12:04 PM 3/12/2010, Ana Staninska wrote: > > > > >Dear Bioconductor, > > >I have a simple experiment that I have to analyze in order to find > > >differentially expressed genes. I have 10 biological replicates, and > > >each biological replicate has two technical replicates which appear > > >as dye swapped. So in total I have 20 arrays. Each of the probes are > > >spotted twice on the array (on the left and on the right hand side). > > >I use limma to do my analysis. I know at the moment it is not > > >possible to treat duplicate spots, technical replicates and > > >biological replicates, but I though if I use the > > >duplicateCorrelation function on my duplicate spots, and then to use > > >a contrast matrix to average of all of the Treated vs Non-treated > > >biological samples, I could address all 3 replications. Am I correct? > > > > > > > > >I am sending a copy of my code, if someone could look at it at tell > > >me whether I made somewhere a mistake. > > >Thank you very much in advance, > > >Sincerely Ana Staninska > > > > > > > > > library(limma)> library(statmod)> library(marray)> > > > library(convert)> library(hexbin)> library(gridBase)> > > > library(RColorBrewer)> > targets <- > > > readTargets("Lysi_270705.txt")> > ### Only manually removed ot > > > absent spots are given 0 weight ###> RGa <- read.maimages(targets, > > > source="genepix", wt.fun=wtflags(weight=0, > > > cutoff=-75), other.columns=c("F635 SD","B635 SD","F532 SD","B532 > > > SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))Read > > > LYSI270705_1_200905.gpr Read LYSI270705_1dw_200905.gpr Read > > > LYSI270705_2_200905.gpr Read LYSI270705_2dw_200905.gpr Read > > > LYSI270705_3_121005.gpr Read LYSI270705_3dw_121005.gpr Read > > > LYSI270705_4_121005.gpr Read LYSI270705_4dw_121005.gpr Read > > > LYSI270705_5_121005.gpr Read LYSI270705_5dw__121005.gpr Read > > > LYSI270705_6_121005.gpr Read LYSI270705_6dw__121005.gpr Read > > > LYSI270705_7_151001.gpr Read LYSI270705_7dw_151005.gpr Read > > > LYSI270705_8_151005.gpr Read LYSI270705_8dw_151005.gpr Read > > > LYSI270705_9_151005.gpr Read LYSI270705_9dw_151005.gpr Read LYSI270705! > > > _10_151005.gpr Read LYSI270705_10dw_151005.gpr > for(i in > > > 1:nrow(RGa)){+ for(j in > > > 1:ncol(RGa)){+ if(RGa$Rb[i,j]+RGa$R[i,j]+ RGa$G[i,j]+ > > > RGa$Gb[i,j] ==0)+ RGa$weights[i,j]<-0+ }+ }> > > > > ####################################################> ### > > > Background Correction = Normexp + offset 25 ####> > > > ####################################################> > RG > > > <-backgroundCorrect(RGa, method="normexp", , normexp.method="mle", > > > offset=25)Green channelCorrected array 1 Corrected array 2 > > > Corrected array 3 Corrected array 4 Corrected array 5 Corrected > > > array 6 Corrected array 7 Corrected array 8 Corrected array 9 > > > Corrected array 10 Corrected array 11 Corrected array 12 Corrected > > > array 13 Corrected array 14 Corrected array 15 Corrected array 16 > > > Corrected array 17 Corrected array 18 Corrected array 19 Corrected > > > array 20 Red channelCorrected array 1 Corrected array 2 Corrected > > > array 3 Corrected array 4 Corrected array 5 Corrected array 6 > > > Corrected array 7 Corrected array 8 Corrected array ! > > > 9 Corrected array 10 Corrected array 11 Corrected array 12 Corrected a > > >rray 13 Corrected array 14 Corrected array 15 Corrected array 16 > > >Corrected array 17 Corrected array 18 Corrected array 19 Corrected > > >array 20 > ####################################################> > > >##### normalize Within arrays #########> > > >####################################################> > MA > > ><-normalizeWithinArrays(RG, method="loess")> > > > >####################################################> ###### > > >Contrast Matrix ############> > > >####################################################> > > > >design<-cbind( + MU1vsWT1=c( > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU2vsWT2=c(0,0, > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU3vsWT3=c(0,0,0,0, > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU4vsWT4=c(0,0,0,0,0,0, > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0),+ MU5vsWT5=c(0,0,0,0,0,0,0,0, > > >1,-1,0,0,0,0,0,0,0,0,0,0),+ MU6vsWT6=c(0,0,0,0,0,0,0,0,0,0, > > >1,-1,0,0,0,0,0,0,0,0), > > >+ MU7vsWT7=c(0,0,0,0,0,0,0,0,0,0! > > > ,0,0, > > > 1,-1,0,0,0,0,0,0),+ MU8vsWT8=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > 1,-1,0,0,0,0),+ MU9vsWT9=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > 1,-1,0,0),+ MU10vsWT10=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > 1,-1))> > cont.matrix <- > > > > > > ####################################################> > > > ### Duplicate Correlations on duplicate spots ####> > > > ####################################################> > > > > corfit<-duplicateCorrelation(MA, ndups=2, spacing=192)> > > > > ####################################################> ##### Linear > > > Fit Model and Contrasts fit #######> > > > ####################################################> > > > > fit<-lmFit(MA, design, ndups=2, spacing=192, > > > cor=corfit$consensus)> > fit<-contrasts.fit(fit, cont.matrix)> > > > > ####################################################> > > > ######### eBayes Statistics ###############> #################! > > > ###################################> > fit<-eBayes(fit)> > ########### > > >###################################################> ### Writing > > >the Results ######> > > >##############################################################> > > >TTnew<-topTable(fit,coef=1, number=100, adjust="BH") > > > > > > > > >Ana StaninskaHelmholtz-Zentrum MuenchenDepartment of Scientific > > >ComputingNeuherberg, Deutschland+49 (0) 89 3187 2656 > > > > > > [[alternative HTML version deleted]] > > > > > >_______________________________________________ > > >Bioconductor mailing list > > >Bioconductor at stat.math.ethz.ch > > >https://stat.ethz.ch/mailman/listinfo/bioconductor > > >Search the archives: > > >http://news.gmane.org/gmane.science.biology.informatics.conductor > > > > Naomi S. Altman 814-865-3791 (voice) > > Associate Professor > > Dept. of Statistics 814-863-7114 (fax) > > Penn State University 814-865-1348 (Statistics) > > University Park, PA 16802-2111 > > Naomi S. Altman 814-865-3791 (voice) Associate Professor Dept. of Statistics 814-863-7114 (fax) Penn State University 814-865-1348 (Statistics) University Park, PA 16802-2111
ADD REPLY
0
Entering edit mode
Dear Naomi, Thank you very very much for your very helpful answers. Could you maybe tell me what did you mean that if the dye swap correlation between two treatments is -0.2 I am in trouble. What is considered to be a good dye swap correlation (I calculate it using duplicateCorrelation function in limma). Also what is considered as a good correlation between duplicate spots (after normalization) ? I know that the easiest way out is to ask a statistician to do the analysis, but I would like to learn it myself to do it (I am a mathematician, so I think I should be able to learn it). Could you maybe point out a literature that I could read and learn a proper way of dealing with any kind of microarrays. Thank you very much one more time, Best, Ana > Date: Fri, 12 Mar 2010 16:29:03 -0500 > To: staninska@hotmail.com; naomi@stat.psu.edu; bioconductor@stat.math.ethz.ch > From: naomi@stat.psu.edu > Subject: RE: [BioC] (no subject) > > Dear Ana, > I actually meant that you should average dye swaps, not spots, > although either is OK as long as you use corfit for the other. > > If there are no technical replicates for some biological reps, the > analysis is much more complicated. This really requires a > statistical consultant and someone who will do some detailed > preliminary analyses. > > Naomi > > p.s. I hope that the correlation of -0.2 for the dye swaps is for > R-G. If it is for treatment A - treatment B, you have a problem. > > At 03:08 PM 3/12/2010, Ana Staninska wrote: > >Dear Naomi, > > > >Thank you very much for your answer. I just have few follow up question. > > > >How big should be the correlation on my duplicate spots in order to > >"safetly" average them? > >Before the normalization, the correlation on my duplicate spots is > >around 0.7-0.8, but after normalization > >it is only around 0.4-0.6. Which I think it is not the best. > >Probably I should mention that the correlation of dye swapped arrays > >is around -0.2. > > > >Also, for some of the experiments, we had to remove certain arrays, > >and therefore not all of my biological replicates are dye swapped. > >In that case I think I should use the contrast matrix to average of > >the treated vs non-treated comparisons. > >Isn't then better to use the corfit$consensus on my duplicate spots? > > > >Thank you very much in advance, > > > >All the best, > >Ana > > > > > > > > > > > > > Date: Fri, 12 Mar 2010 12:28:06 -0500 > > > To: staninska@hotmail.com; bioconductor@stat.math.ethz.ch > > > From: naomi@stat.psu.edu > > > Subject: Re: [BioC] (no subject) > > > > > > The estimated error variance used for the test denominator will be an > > > average of technical and biological replication, and therefore not > > > really appropriate for your analysis. However, you could average the > > > 2 technical replicates prior to running limma which would give you > > > the right error structure. > > > > > > --Naomi > > > > > > At 12:04 PM 3/12/2010, Ana Staninska wrote: > > > > > > >Dear Bioconductor, > > > >I have a simple experiment that I have to analyze in order to find > > > >differentially expressed genes. I have 10 biological replicates, and > > > >each biological replicate has two technical replicates which appear > > > >as dye swapped. So in total I have 20 arrays. Each of the probes are > > > >spotted twice on the array (on the left and on the right hand side). > > > >I use limma to do my analysis. I know at the moment it is not > > > >possible to treat duplicate spots, technical replicates and > > > >biological replicates, but I though if I use the > > > >duplicateCorrelation function on my duplicate spots, and then to use > > > >a contrast matrix to average of all of the Treated vs Non- treated > > > >biological samples, I could address all 3 replications. Am I correct? > > > > > > > > > > > >I am sending a copy of my code, if someone could look at it at tell > > > >me whether I made somewhere a mistake. > > > >Thank you very much in advance, > > > >Sincerely Ana Staninska > > > > > > > > > > > > library(limma)> library(statmod)> library(marray)> > > > > library(convert)> library(hexbin)> library(gridBase)> > > > > library(RColorBrewer)> > targets <- > > > > readTargets("Lysi_270705.txt")> > ### Only manually removed ot > > > > absent spots are given 0 weight ###> RGa <- read.maimages(targets, > > > > source="genepix", wt.fun=wtflags(weight=0, > > > > cutoff=-75), other.columns=c("F635 SD","B635 SD","F532 SD","B532 > > > > SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))Read > > > > LYSI270705_1_200905.gpr Read LYSI270705_1dw_200905.gpr Read > > > > LYSI270705_2_200905.gpr Read LYSI270705_2dw_200905.gpr Read > > > > LYSI270705_3_121005.gpr Read LYSI270705_3dw_121005.gpr Read > > > > LYSI270705_4_121005.gpr Read LYSI270705_4dw_121005.gpr Read > > > > LYSI270705_5_121005.gpr Read LYSI270705_5dw__121005.gpr Read > > > > LYSI270705_6_121005.gpr Read LYSI270705_6dw__121005.gpr Read > > > > LYSI270705_7_151001.gpr Read LYSI270705_7dw_151005.gpr Read > > > > LYSI270705_8_151005.gpr Read LYSI270705_8dw_151005.gpr Read > > > > LYSI270705_9_151005.gpr Read LYSI270705_9dw_151005.gpr Read LYSI270705! > > > > _10_151005.gpr Read LYSI270705_10dw_151005.gpr > for(i in > > > > 1:nrow(RGa)){+ for(j in > > > > 1:ncol(RGa)){+ if(RGa$Rb[i,j]+RGa$R[i,j]+ RGa$G[i,j]+ > > > > RGa$Gb[i,j] ==0)+ RGa$weights[i,j]<-0+ }+ }> > > > > > ####################################################> ### > > > > Background Correction = Normexp + offset 25 ####> > > > > ####################################################> > RG > > > > <-backgroundCorrect(RGa, method="normexp", , normexp.method="mle", > > > > offset=25)Green channelCorrected array 1 Corrected array 2 > > > > Corrected array 3 Corrected array 4 Corrected array 5 Corrected > > > > array 6 Corrected array 7 Corrected array 8 Corrected array 9 > > > > Corrected array 10 Corrected array 11 Corrected array 12 Corrected > > > > array 13 Corrected array 14 Corrected array 15 Corrected array 16 > > > > Corrected array 17 Corrected array 18 Corrected array 19 Corrected > > > > array 20 Red channelCorrected array 1 Corrected array 2 Corrected > > > > array 3 Corrected array 4 Corrected array 5 Corrected array 6 > > > > Corrected array 7 Corrected array 8 Corrected array ! > > > > 9 Corrected array 10 Corrected array 11 Corrected array 12 Corrected a > > > >rray 13 Corrected array 14 Corrected array 15 Corrected array 16 > > > >Corrected array 17 Corrected array 18 Corrected array 19 Corrected > > > >array 20 > ####################################################> > > > >##### normalize Within arrays #########> > > > >####################################################> > MA > > > ><-normalizeWithinArrays(RG, method="loess")> > > > > >####################################################> ###### > > > >Contrast Matrix ############> > > > >####################################################> > > > > >design<-cbind( + MU1vsWT1=c( > > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU2vsWT2=c(0,0, > > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU3vsWT3=c(0,0,0,0, > > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU4vsWT4=c(0,0,0,0,0,0, > > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0),+ MU5vsWT5=c(0,0,0,0,0,0,0,0, > > > >1,-1,0,0,0,0,0,0,0,0,0,0),+ MU6vsWT6=c(0,0,0,0,0,0,0,0,0,0, > > > >1,-1,0,0,0,0,0,0,0,0), > > > >+ MU7vsWT7=c(0,0,0,0,0,0,0,0,0,0! > > > > ,0,0, > > > > 1,-1,0,0,0,0,0,0),+ MU8vsWT8=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > > 1,-1,0,0,0,0),+ MU9vsWT9=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > > 1,-1,0,0),+ MU10vsWT10=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > > 1,-1))> > cont.matrix <- > > > > > > > > ####################################################> > > > > ### Duplicate Correlations on duplicate spots ####> > > > > ####################################################> > > > > > corfit<-duplicateCorrelation(MA, ndups=2, spacing=192)> > > > > > ####################################################> ##### Linear > > > > Fit Model and Contrasts fit #######> > > > > ####################################################> > > > > > fit<-lmFit(MA, design, ndups=2, spacing=192, > > > > cor=corfit$consensus)> > fit<-contrasts.fit(fit, cont.matrix)> > > > > > ####################################################> > > > > ######### eBayes Statistics ###############> #################! > > > > ###################################> > fit<-eBayes(fit)> > ########### > > > >###################################################> ### Writing > > > >the Results ######> > > > >##############################################################> > > > >TTnew<-topTable(fit,coef=1, number=100, adjust="BH") > > > > > > > > > > > >Ana StaninskaHelmholtz-Zentrum MuenchenDepartment of Scientific > > > >ComputingNeuherberg, Deutschland+49 (0) 89 3187 2656 > > > > > > > > [[alternative HTML version deleted]] > > > > > > > >_______________________________________________ > > > >Bioconductor mailing list > > > >Bioconductor@stat.math.ethz.ch > > > >https://stat.ethz.ch/mailman/listinfo/bioconductor > > > >Search the archives: > > > >http://news.gmane.org/gmane.science.biology.informatics.conductor > > > > > > Naomi S. Altman 814-865-3791 (voice) > > > Associate Professor > > > Dept. of Statistics 814-863-7114 (fax) > > > Penn State University 814-865-1348 (Statistics) > > > University Park, PA 16802-2111 > > > > > Naomi S. Altman 814-865-3791 (voice) > Associate Professor > Dept. of Statistics 814-863-7114 (fax) > Penn State University 814-865-1348 (Statistics) > University Park, PA 16802-2111 > [[alternative HTML version deleted]]
ADD REPLY
0
Entering edit mode
Hi Ana, You need to re-read what Naomi said. A correlation between dye swaps would be expected. What she was warning about was a correlation between treatments. As for a good book, have you read the BioC monograph? http://bioconductor.org/pub/docs/mogr/ The case studies might be of interest as well http://bioconductor.org/pub/biocases/ Best, Jim Ana Staninska wrote: > Dear Naomi, > Thank you very very much for your very helpful answers. > Could you maybe tell me what did you mean that if the dye swap correlation between two treatments is -0.2 I am in trouble. What is considered to be a good dye swap correlation (I calculate it using duplicateCorrelation function in limma). Also what is considered as a good correlation between duplicate spots (after normalization) ? > I know that the easiest way out is to ask a statistician to do the analysis, but I would like to learn it myself to do it (I am a mathematician, so I think I should be able to learn it). Could you maybe point out a literature that I could read and learn a proper way of dealing with any kind of microarrays. > > > Thank you very much one more time, Best, Ana > >> Date: Fri, 12 Mar 2010 16:29:03 -0500 >> To: staninska at hotmail.com; naomi at stat.psu.edu; bioconductor at stat.math.ethz.ch >> From: naomi at stat.psu.edu >> Subject: RE: [BioC] (no subject) >> >> Dear Ana, >> I actually meant that you should average dye swaps, not spots, >> although either is OK as long as you use corfit for the other. >> >> If there are no technical replicates for some biological reps, the >> analysis is much more complicated. This really requires a >> statistical consultant and someone who will do some detailed >> preliminary analyses. >> >> Naomi >> >> p.s. I hope that the correlation of -0.2 for the dye swaps is for >> R-G. If it is for treatment A - treatment B, you have a problem. >> >> At 03:08 PM 3/12/2010, Ana Staninska wrote: >>> Dear Naomi, >>> >>> Thank you very much for your answer. I just have few follow up question. >>> >>> How big should be the correlation on my duplicate spots in order to >>> "safetly" average them? >>> Before the normalization, the correlation on my duplicate spots is >>> around 0.7-0.8, but after normalization >>> it is only around 0.4-0.6. Which I think it is not the best. >>> Probably I should mention that the correlation of dye swapped arrays >>> is around -0.2. >>> >>> Also, for some of the experiments, we had to remove certain arrays, >>> and therefore not all of my biological replicates are dye swapped. >>> In that case I think I should use the contrast matrix to average of >>> the treated vs non-treated comparisons. >>> Isn't then better to use the corfit$consensus on my duplicate spots? >>> >>> Thank you very much in advance, >>> >>> All the best, >>> Ana >>> >>> >>> >>> >>> >>>> Date: Fri, 12 Mar 2010 12:28:06 -0500 >>>> To: staninska at hotmail.com; bioconductor at stat.math.ethz.ch >>>> From: naomi at stat.psu.edu >>>> Subject: Re: [BioC] (no subject) >>>> >>>> The estimated error variance used for the test denominator will be an >>>> average of technical and biological replication, and therefore not >>>> really appropriate for your analysis. However, you could average the >>>> 2 technical replicates prior to running limma which would give you >>>> the right error structure. >>>> >>>> --Naomi >>>> >>>> At 12:04 PM 3/12/2010, Ana Staninska wrote: >>>> >>>>> Dear Bioconductor, >>>>> I have a simple experiment that I have to analyze in order to find >>>>> differentially expressed genes. I have 10 biological replicates, and >>>>> each biological replicate has two technical replicates which appear >>>>> as dye swapped. So in total I have 20 arrays. Each of the probes are >>>>> spotted twice on the array (on the left and on the right hand side). >>>>> I use limma to do my analysis. I know at the moment it is not >>>>> possible to treat duplicate spots, technical replicates and >>>>> biological replicates, but I though if I use the >>>>> duplicateCorrelation function on my duplicate spots, and then to use >>>>> a contrast matrix to average of all of the Treated vs Non- treated >>>>> biological samples, I could address all 3 replications. Am I correct? >>>>> >>>>> >>>>> I am sending a copy of my code, if someone could look at it at tell >>>>> me whether I made somewhere a mistake. >>>>> Thank you very much in advance, >>>>> Sincerely Ana Staninska >>>>> >>>>> >>>>> library(limma)> library(statmod)> library(marray)> >>>>> library(convert)> library(hexbin)> library(gridBase)> >>>>> library(RColorBrewer)> > targets <- >>>>> readTargets("Lysi_270705.txt")> > ### Only manually removed ot >>>>> absent spots are given 0 weight ###> RGa <- read.maimages(targets, >>>>> source="genepix", wt.fun=wtflags(weight=0, >>>>> cutoff=-75), other.columns=c("F635 SD","B635 SD","F532 SD","B532 >>>>> SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))Read >>>>> LYSI270705_1_200905.gpr Read LYSI270705_1dw_200905.gpr Read >>>>> LYSI270705_2_200905.gpr Read LYSI270705_2dw_200905.gpr Read >>>>> LYSI270705_3_121005.gpr Read LYSI270705_3dw_121005.gpr Read >>>>> LYSI270705_4_121005.gpr Read LYSI270705_4dw_121005.gpr Read >>>>> LYSI270705_5_121005.gpr Read LYSI270705_5dw__121005.gpr Read >>>>> LYSI270705_6_121005.gpr Read LYSI270705_6dw__121005.gpr Read >>>>> LYSI270705_7_151001.gpr Read LYSI270705_7dw_151005.gpr Read >>>>> LYSI270705_8_151005.gpr Read LYSI270705_8dw_151005.gpr Read >>>>> LYSI270705_9_151005.gpr Read LYSI270705_9dw_151005.gpr Read LYSI270705! >>>>> _10_151005.gpr Read LYSI270705_10dw_151005.gpr > for(i in >>>>> 1:nrow(RGa)){+ for(j in >>>>> 1:ncol(RGa)){+ if(RGa$Rb[i,j]+RGa$R[i,j]+ RGa$G[i,j]+ >>>>> RGa$Gb[i,j] ==0)+ RGa$weights[i,j]<-0+ }+ }> > >>>>> ####################################################> ### >>>>> Background Correction = Normexp + offset 25 ####> >>>>> ####################################################> > RG >>>>> <-backgroundCorrect(RGa, method="normexp", , normexp.method="mle", >>>>> offset=25)Green channelCorrected array 1 Corrected array 2 >>>>> Corrected array 3 Corrected array 4 Corrected array 5 Corrected >>>>> array 6 Corrected array 7 Corrected array 8 Corrected array 9 >>>>> Corrected array 10 Corrected array 11 Corrected array 12 Corrected >>>>> array 13 Corrected array 14 Corrected array 15 Corrected array 16 >>>>> Corrected array 17 Corrected array 18 Corrected array 19 Corrected >>>>> array 20 Red channelCorrected array 1 Corrected array 2 Corrected >>>>> array 3 Corrected array 4 Corrected array 5 Corrected array 6 >>>>> Corrected array 7 Corrected array 8 Corrected array ! >>>>> 9 Corrected array 10 Corrected array 11 Corrected array 12 Corrected a >>>>> rray 13 Corrected array 14 Corrected array 15 Corrected array 16 >>>>> Corrected array 17 Corrected array 18 Corrected array 19 Corrected >>>>> array 20 > ####################################################> >>>>> ##### normalize Within arrays #########> >>>>> ####################################################> > MA >>>>> <-normalizeWithinArrays(RG, method="loess")> > >>>>> ####################################################> ###### >>>>> Contrast Matrix ############> >>>>> ####################################################> > >>>>> design<-cbind( + MU1vsWT1=c( >>>>> 1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU2vsWT2=c(0,0, >>>>> 1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU3vsWT3=c(0,0,0,0, >>>>> 1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU4vsWT4=c(0,0,0,0,0,0, >>>>> 1,-1,0,0,0,0,0,0,0,0,0,0,0,0),+ MU5vsWT5=c(0,0,0,0,0,0,0,0, >>>>> 1,-1,0,0,0,0,0,0,0,0,0,0),+ MU6vsWT6=c(0,0,0,0,0,0,0,0,0,0, >>>>> 1,-1,0,0,0,0,0,0,0,0), >>>>> + MU7vsWT7=c(0,0,0,0,0,0,0,0,0,0! >>>>> ,0,0, >>>>> 1,-1,0,0,0,0,0,0),+ MU8vsWT8=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0, >>>>> 1,-1,0,0,0,0),+ MU9vsWT9=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, >>>>> 1,-1,0,0),+ MU10vsWT10=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, >>>>> 1,-1))> > cont.matrix <- >>>>> >>>>> ####################################################> >>>>> ### Duplicate Correlations on duplicate spots ####> >>>>> ####################################################> > >>>>> corfit<-duplicateCorrelation(MA, ndups=2, spacing=192)> > >>>>> ####################################################> ##### Linear >>>>> Fit Model and Contrasts fit #######> >>>>> ####################################################> > >>>>> fit<-lmFit(MA, design, ndups=2, spacing=192, >>>>> cor=corfit$consensus)> > fit<-contrasts.fit(fit, cont.matrix)> > >>>>> ####################################################> >>>>> ######### eBayes Statistics ###############> #################! >>>>> ###################################> > fit<-eBayes(fit)> > ########### >>>>> ###################################################> ### Writing >>>>> the Results ######> >>>>> ##############################################################> >>>>> TTnew<-topTable(fit,coef=1, number=100, adjust="BH") >>>>> >>>>> >>>>> Ana StaninskaHelmholtz-Zentrum MuenchenDepartment of Scientific >>>>> ComputingNeuherberg, Deutschland+49 (0) 89 3187 2656 >>>>> >>>>> [[alternative HTML version deleted]] >>>>> >>>>> _______________________________________________ >>>>> Bioconductor mailing list >>>>> Bioconductor at stat.math.ethz.ch >>>>> https://stat.ethz.ch/mailman/listinfo/bioconductor >>>>> Search the archives: >>>>> http://news.gmane.org/gmane.science.biology.informatics.conductor >>>> Naomi S. Altman 814-865-3791 (voice) >>>> Associate Professor >>>> Dept. of Statistics 814-863-7114 (fax) >>>> Penn State University 814-865-1348 (Statistics) >>>> University Park, PA 16802-2111 >>>> >> Naomi S. Altman 814-865-3791 (voice) >> Associate Professor >> Dept. of Statistics 814-863-7114 (fax) >> Penn State University 814-865-1348 (Statistics) >> University Park, PA 16802-2111 >> > > [[alternative HTML version deleted]] > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor ********************************************************** Electronic Mail is not secure, may not be read every day, and should not be used for urgent or sensitive issues
ADD REPLY
0
Entering edit mode
Actually, I did not express myself well. I was not talking about error correlation. People usually look at the correlation in M between arrays. Only the differentially expressing genes should be correlated - the remainder of M-values are just noise and so should be uncorrelated across arrays. For this reason the size of the correlation should be small. Since M represents A - B on one array and B - A on the other (with treatments A and B), the correlation should be negative. Great suggestions for reading. --Naomi At 08:54 AM 3/13/2010, James W. MacDonald wrote: >Hi Ana, > >You need to re-read what Naomi said. A correlation between dye swaps >would be expected. What she was warning about was a correlation >between treatments. > >As for a good book, have you read the BioC monograph? > >http://bioconductor.org/pub/docs/mogr/ > >The case studies might be of interest as well > >http://bioconductor.org/pub/biocases/ > >Best, > >Jim > > > >Ana Staninska wrote: >>Dear Naomi, Thank you very very much for your very helpful answers. >>Could you maybe tell me what did you mean that if the dye swap >>correlation between two treatments is -0.2 I am in trouble. What is >>considered to be a good dye swap correlation (I calculate it using >>duplicateCorrelation function in limma). Also what is considered as >>a good correlation between duplicate spots (after normalization) ? >>I know that the easiest way out is to ask a statistician to do the >>analysis, but I would like to learn it myself to do it (I am a >>mathematician, so I think I should be able to learn it). Could you >>maybe point out a literature that I could read and learn a proper >>way of dealing with any kind of microarrays. >>Thank you very much one more time, Best, Ana >> >>>Date: Fri, 12 Mar 2010 16:29:03 -0500 >>>To: staninska at hotmail.com; naomi at stat.psu.edu; >>>bioconductor at stat.math.ethz.ch >>>From: naomi at stat.psu.edu >>>Subject: RE: [BioC] (no subject) >>> >>>Dear Ana, >>>I actually meant that you should average dye swaps, not spots, >>>although either is OK as long as you use corfit for the other. >>> >>>If there are no technical replicates for some biological reps, the >>>analysis is much more complicated. This really requires a >>>statistical consultant and someone who will do some detailed >>>preliminary analyses. >>> >>>Naomi >>> >>>p.s. I hope that the correlation of -0.2 for the dye swaps is for >>>R-G. If it is for treatment A - treatment B, you have a problem. >>> >>>At 03:08 PM 3/12/2010, Ana Staninska wrote: >>>>Dear Naomi, >>>> >>>>Thank you very much for your answer. I just have few follow up question. >>>> >>>>How big should be the correlation on my duplicate spots in order >>>>to "safetly" average them? >>>>Before the normalization, the correlation on my duplicate spots >>>>is around 0.7-0.8, but after normalization >>>>it is only around 0.4-0.6. Which I think it is not the best. >>>>Probably I should mention that the correlation of dye swapped >>>>arrays is around -0.2. >>>> >>>>Also, for some of the experiments, we had to remove certain >>>>arrays, and therefore not all of my biological replicates are dye swapped. >>>>In that case I think I should use the contrast matrix to average >>>>of the treated vs non-treated comparisons. >>>>Isn't then better to use the corfit$consensus on my duplicate spots? >>>> >>>>Thank you very much in advance, >>>> >>>>All the best, >>>>Ana >>>> >>>> >>>> >>>> >>>> >>>>>Date: Fri, 12 Mar 2010 12:28:06 -0500 >>>>>To: staninska at hotmail.com; bioconductor at stat.math.ethz.ch >>>>>From: naomi at stat.psu.edu >>>>>Subject: Re: [BioC] (no subject) >>>>> >>>>>The estimated error variance used for the test denominator will be an >>>>>average of technical and biological replication, and therefore not >>>>>really appropriate for your analysis. However, you could average the >>>>>2 technical replicates prior to running limma which would give you >>>>>the right error structure. >>>>> >>>>>--Naomi >>>>> >>>>>At 12:04 PM 3/12/2010, Ana Staninska wrote: >>>>> >>>>>>Dear Bioconductor, >>>>>>I have a simple experiment that I have to analyze in order to find >>>>>>differentially expressed genes. I have 10 biological replicates, and >>>>>>each biological replicate has two technical replicates which appear >>>>>>as dye swapped. So in total I have 20 arrays. Each of the probes are >>>>>>spotted twice on the array (on the left and on the right hand side). >>>>>>I use limma to do my analysis. I know at the moment it is not >>>>>>possible to treat duplicate spots, technical replicates and >>>>>>biological replicates, but I though if I use the >>>>>>duplicateCorrelation function on my duplicate spots, and then to use >>>>>>a contrast matrix to average of all of the Treated vs Non- treated >>>>>>biological samples, I could address all 3 replications. Am I correct? >>>>>> >>>>>> >>>>>>I am sending a copy of my code, if someone could look at it at tell >>>>>>me whether I made somewhere a mistake. >>>>>>Thank you very much in advance, >>>>>>Sincerely Ana Staninska >>>>>> >>>>>> >>>>>>library(limma)> library(statmod)> library(marray)> >>>>>>library(convert)> library(hexbin)> library(gridBase)> >>>>>>library(RColorBrewer)> > targets <- >>>>>>readTargets("Lysi_270705.txt")> > ### Only manually removed ot >>>>>>absent spots are given 0 weight ###> RGa <- read.maimages(targets, >>>>>>source="genepix", wt.fun=wtflags(weight=0, >>>>>>cutoff=-75), other.columns=c("F635 SD","B635 SD","F532 SD","B532 >>>>>>SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))Read >>>>>>LYSI270705_1_200905.gpr Read LYSI270705_1dw_200905.gpr Read >>>>>>LYSI270705_2_200905.gpr Read LYSI270705_2dw_200905.gpr Read >>>>>>LYSI270705_3_121005.gpr Read LYSI270705_3dw_121005.gpr Read >>>>>>LYSI270705_4_121005.gpr Read LYSI270705_4dw_121005.gpr Read >>>>>>LYSI270705_5_121005.gpr Read LYSI270705_5dw__121005.gpr Read >>>>>>LYSI270705_6_121005.gpr Read LYSI270705_6dw__121005.gpr Read >>>>>>LYSI270705_7_151001.gpr Read LYSI270705_7dw_151005.gpr Read >>>>>>LYSI270705_8_151005.gpr Read LYSI270705_8dw_151005.gpr Read >>>>>>LYSI270705_9_151005.gpr Read LYSI270705_9dw_151005.gpr Read LYSI270705! >>>>>>_10_151005.gpr Read LYSI270705_10dw_151005.gpr > for(i in >>>>>>1:nrow(RGa)){+ for(j in >>>>>>1:ncol(RGa)){+ if(RGa$Rb[i,j]+RGa$R[i,j]+ RGa$G[i,j]+ >>>>>>RGa$Gb[i,j] ==0)+ RGa$weights[i,j]<-0+ }+ }> > >>>>>>####################################################> ### >>>>>>Background Correction = Normexp + offset 25 ####> >>>>>>####################################################> > RG >>>>>><-backgroundCorrect(RGa, method="normexp", , normexp.method="mle", >>>>>>offset=25)Green channelCorrected array 1 Corrected array 2 >>>>>>Corrected array 3 Corrected array 4 Corrected array 5 Corrected >>>>>>array 6 Corrected array 7 Corrected array 8 Corrected array 9 >>>>>>Corrected array 10 Corrected array 11 Corrected array 12 Corrected >>>>>>array 13 Corrected array 14 Corrected array 15 Corrected array 16 >>>>>>Corrected array 17 Corrected array 18 Corrected array 19 Corrected >>>>>>array 20 Red channelCorrected array 1 Corrected array 2 Corrected >>>>>>array 3 Corrected array 4 Corrected array 5 Corrected array 6 >>>>>>Corrected array 7 Corrected array 8 Corrected array ! >>>>>>9 Corrected array 10 Corrected array 11 Corrected array 12 Corrected a >>>>>>rray 13 Corrected array 14 Corrected array 15 Corrected array 16 >>>>>>Corrected array 17 Corrected array 18 Corrected array 19 Corrected >>>>>>array 20 > ####################################################> >>>>>>##### normalize Within arrays #########> >>>>>>####################################################> > MA >>>>>><-normalizeWithinArrays(RG, method="loess")> > >>>>>>####################################################> ###### >>>>>>Contrast Matrix ############> >>>>>>####################################################> > >>>>>>design<-cbind( + MU1vsWT1=c( >>>>>>1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU2vsWT2=c(0,0, >>>>>>1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU3vsWT3=c(0,0,0,0, >>>>>>1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU4vsWT4=c(0,0,0,0,0,0, >>>>>>1,-1,0,0,0,0,0,0,0,0,0,0,0,0),+ MU5vsWT5=c(0,0,0,0,0,0,0,0, >>>>>>1,-1,0,0,0,0,0,0,0,0,0,0),+ MU6vsWT6=c(0,0,0,0,0,0,0,0,0,0, >>>>>>1,-1,0,0,0,0,0,0,0,0), >>>>>>+ MU7vsWT7=c(0,0,0,0,0,0,0,0,0,0! >>>>>>,0,0, >>>>>>1,-1,0,0,0,0,0,0),+ MU8vsWT8=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0, >>>>>>1,-1,0,0,0,0),+ MU9vsWT9=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, >>>>>>1,-1,0,0),+ MU10vsWT10=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, >>>>>>1,-1))> > cont.matrix <- >>>>>> >>>>>>####################################################> >>>>>>### Duplicate Correlations on duplicate spots ####> >>>>>>####################################################> > >>>>>>corfit<-duplicateCorrelation(MA, ndups=2, spacing=192)> > >>>>>>####################################################> ##### Linear >>>>>>Fit Model and Contrasts fit #######> >>>>>>####################################################> > >>>>>>fit<-lmFit(MA, design, ndups=2, spacing=192, >>>>>>cor=corfit$consensus)> > fit<-contrasts.fit(fit, cont.matrix)> > >>>>>>####################################################> >>>>>>######### eBayes Statistics ###############> #################! >>>>>>###################################> > fit<-eBayes(fit)> > ########### >>>>>>###################################################> ### Writing >>>>>>the Results ######> >>>>>>##############################################################> >>>>>>TTnew<-topTable(fit,coef=1, number=100, adjust="BH") >>>>>> >>>>>> >>>>>>Ana StaninskaHelmholtz-Zentrum MuenchenDepartment of Scientific >>>>>>ComputingNeuherberg, Deutschland+49 (0) 89 3187 2656 >>>>>> >>>>>>[[alternative HTML version deleted]] >>>>>> >>>>>>_______________________________________________ >>>>>>Bioconductor mailing list >>>>>>Bioconductor at stat.math.ethz.ch >>>>>>https://stat.ethz.ch/mailman/listinfo/bioconductor >>>>>>Search the archives: >>>>>>http://news.gmane.org/gmane.science.biology.informatics.conducto r >>>>>Naomi S. Altman 814-865-3791 (voice) >>>>>Associate Professor >>>>>Dept. of Statistics 814-863-7114 (fax) >>>>>Penn State University 814-865-1348 (Statistics) >>>>>University Park, PA 16802-2111 >>>Naomi S. Altman 814-865-3791 (voice) >>>Associate Professor >>>Dept. of Statistics 814-863-7114 (fax) >>>Penn State University 814-865-1348 (Statistics) >>>University Park, PA 16802-2111 >> >> [[alternative HTML version deleted]] >>_______________________________________________ >>Bioconductor mailing list >>Bioconductor at stat.math.ethz.ch >>https://stat.ethz.ch/mailman/listinfo/bioconductor >>Search the archives: >>http://news.gmane.org/gmane.science.biology.informatics.conductor >********************************************************** >Electronic Mail is not secure, may not be read every day, and should >not be used for urgent or sensitive issues >_______________________________________________ >Bioconductor mailing list >Bioconductor at stat.math.ethz.ch >https://stat.ethz.ch/mailman/listinfo/bioconductor >Search the archives: >http://news.gmane.org/gmane.science.biology.informatics.conductor Naomi S. Altman 814-865-3791 (voice) Associate Professor Dept. of Statistics 814-863-7114 (fax) Penn State University 814-865-1348 (Statistics) University Park, PA 16802-2111
ADD REPLY
0
Entering edit mode
Dear Ana, There are several very good books on microarray analysis - several of them written by contributers to this email list and using Bioconductor. You might also want to read up on ANOVA for unbalanced data. I cannot recommend any particular text, as they mostly focus on balanced designs. There is a text by Searle focusing on unbalanced data, but I have only dipped into it. Regards, Naomi At 03:00 AM 3/13/2010, Ana Staninska wrote: >Dear Naomi, >Thank you very very much for your very helpful answers. >Could you maybe tell me what did you mean that if the dye swap >correlation between two treatments is -0.2 I am in trouble. What is >considered to be a good dye swap correlation (I calculate it using >duplicateCorrelation function in limma). Also what is considered as >a good correlation between duplicate spots (after normalization) ? >I know that the easiest way out is to ask a statistician to do the >analysis, but I would like to learn it myself to do it (I am a >mathematician, so I think I should be able to learn it). Could you >maybe point out a literature that I could read and learn a proper >way of dealing with any kind of microarrays. > > >Thank you very much one more time, Best, Ana > > > Date: Fri, 12 Mar 2010 16:29:03 -0500 > > To: staninska at hotmail.com; naomi at stat.psu.edu; > bioconductor at stat.math.ethz.ch > > From: naomi at stat.psu.edu > > Subject: RE: [BioC] (no subject) > > > > Dear Ana, > > I actually meant that you should average dye swaps, not spots, > > although either is OK as long as you use corfit for the other. > > > > If there are no technical replicates for some biological reps, the > > analysis is much more complicated. This really requires a > > statistical consultant and someone who will do some detailed > > preliminary analyses. > > > > Naomi > > > > p.s. I hope that the correlation of -0.2 for the dye swaps is for > > R-G. If it is for treatment A - treatment B, you have a problem. > > > > At 03:08 PM 3/12/2010, Ana Staninska wrote: > > >Dear Naomi, > > > > > >Thank you very much for your answer. I just have few follow up question. > > > > > >How big should be the correlation on my duplicate spots in order to > > >"safetly" average them? > > >Before the normalization, the correlation on my duplicate spots is > > >around 0.7-0.8, but after normalization > > >it is only around 0.4-0.6. Which I think it is not the best. > > >Probably I should mention that the correlation of dye swapped arrays > > >is around -0.2. > > > > > >Also, for some of the experiments, we had to remove certain arrays, > > >and therefore not all of my biological replicates are dye swapped. > > >In that case I think I should use the contrast matrix to average of > > >the treated vs non-treated comparisons. > > >Isn't then better to use the corfit$consensus on my duplicate spots? > > > > > >Thank you very much in advance, > > > > > >All the best, > > >Ana > > > > > > > > > > > > > > > > > > > Date: Fri, 12 Mar 2010 12:28:06 -0500 > > > > To: staninska at hotmail.com; bioconductor at stat.math.ethz.ch > > > > From: naomi at stat.psu.edu > > > > Subject: Re: [BioC] (no subject) > > > > > > > > The estimated error variance used for the test denominator will be an > > > > average of technical and biological replication, and therefore not > > > > really appropriate for your analysis. However, you could average the > > > > 2 technical replicates prior to running limma which would give you > > > > the right error structure. > > > > > > > > --Naomi > > > > > > > > At 12:04 PM 3/12/2010, Ana Staninska wrote: > > > > > > > > >Dear Bioconductor, > > > > >I have a simple experiment that I have to analyze in order to find > > > > >differentially expressed genes. I have 10 biological replicates, and > > > > >each biological replicate has two technical replicates which appear > > > > >as dye swapped. So in total I have 20 arrays. Each of the probes are > > > > >spotted twice on the array (on the left and on the right hand side). > > > > >I use limma to do my analysis. I know at the moment it is not > > > > >possible to treat duplicate spots, technical replicates and > > > > >biological replicates, but I though if I use the > > > > >duplicateCorrelation function on my duplicate spots, and then to use > > > > >a contrast matrix to average of all of the Treated vs Non- treated > > > > >biological samples, I could address all 3 replications. Am I correct? > > > > > > > > > > > > > > >I am sending a copy of my code, if someone could look at it at tell > > > > >me whether I made somewhere a mistake. > > > > >Thank you very much in advance, > > > > >Sincerely Ana Staninska > > > > > > > > > > > > > > > library(limma)> library(statmod)> library(marray)> > > > > > library(convert)> library(hexbin)> library(gridBase)> > > > > > library(RColorBrewer)> > targets <- > > > > > readTargets("Lysi_270705.txt")> > ### Only manually removed ot > > > > > absent spots are given 0 weight ###> RGa <- read.maimages(targets, > > > > > source="genepix", wt.fun=wtflags(weight=0, > > > > > cutoff=-75), other.columns=c("F635 SD","B635 SD","F532 SD","B532 > > > > > SD","B532 Mean","B635 Mean","F Pixels","B Pixels"))Read > > > > > LYSI270705_1_200905.gpr Read LYSI270705_1dw_200905.gpr Read > > > > > LYSI270705_2_200905.gpr Read LYSI270705_2dw_200905.gpr Read > > > > > LYSI270705_3_121005.gpr Read LYSI270705_3dw_121005.gpr Read > > > > > LYSI270705_4_121005.gpr Read LYSI270705_4dw_121005.gpr Read > > > > > LYSI270705_5_121005.gpr Read LYSI270705_5dw__121005.gpr Read > > > > > LYSI270705_6_121005.gpr Read LYSI270705_6dw__121005.gpr Read > > > > > LYSI270705_7_151001.gpr Read LYSI270705_7dw_151005.gpr Read > > > > > LYSI270705_8_151005.gpr Read LYSI270705_8dw_151005.gpr Read > > > > > LYSI270705_9_151005.gpr Read LYSI270705_9dw_151005.gpr Read > LYSI270705! > > > > > _10_151005.gpr Read LYSI270705_10dw_151005.gpr > for(i in > > > > > 1:nrow(RGa)){+ for(j in > > > > > 1:ncol(RGa)){+ if(RGa$Rb[i,j]+RGa$R[i,j]+ RGa$G[i,j]+ > > > > > RGa$Gb[i,j] ==0)+ RGa$weights[i,j]<-0+ }+ }> > > > > > > ####################################################> ### > > > > > Background Correction = Normexp + offset 25 ####> > > > > > ####################################################> > RG > > > > > <-backgroundCorrect(RGa, method="normexp", , normexp.method="mle", > > > > > offset=25)Green channelCorrected array 1 Corrected array 2 > > > > > Corrected array 3 Corrected array 4 Corrected array 5 Corrected > > > > > array 6 Corrected array 7 Corrected array 8 Corrected array 9 > > > > > Corrected array 10 Corrected array 11 Corrected array 12 Corrected > > > > > array 13 Corrected array 14 Corrected array 15 Corrected array 16 > > > > > Corrected array 17 Corrected array 18 Corrected array 19 Corrected > > > > > array 20 Red channelCorrected array 1 Corrected array 2 Corrected > > > > > array 3 Corrected array 4 Corrected array 5 Corrected array 6 > > > > > Corrected array 7 Corrected array 8 Corrected array ! > > > > > 9 Corrected array 10 Corrected array 11 Corrected array 12 > Corrected a > > > > >rray 13 Corrected array 14 Corrected array 15 Corrected array 16 > > > > >Corrected array 17 Corrected array 18 Corrected array 19 Corrected > > > > >array 20 > ####################################################> > > > > >##### normalize Within arrays #########> > > > > >####################################################> > MA > > > > ><-normalizeWithinArrays(RG, method="loess")> > > > > > >####################################################> ###### > > > > >Contrast Matrix ############> > > > > >####################################################> > > > > > >design<-cbind( + MU1vsWT1=c( > > > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU2vsWT2=c(0,0, > > > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU3vsWT3=c(0,0,0,0, > > > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0),+ MU4vsWT4=c(0,0,0,0,0,0, > > > > >1,-1,0,0,0,0,0,0,0,0,0,0,0,0),+ MU5vsWT5=c(0,0,0,0,0,0,0,0, > > > > >1,-1,0,0,0,0,0,0,0,0,0,0),+ MU6vsWT6=c(0,0,0,0,0,0,0,0,0,0, > > > > >1,-1,0,0,0,0,0,0,0,0), > > > > >+ MU7vsWT7=c(0,0,0,0,0,0,0,0,0,0! > > > > > ,0,0, > > > > > 1,-1,0,0,0,0,0,0),+ MU8vsWT8=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > > > 1,-1,0,0,0,0),+ MU9vsWT9=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > > > 1,-1,0,0),+ MU10vsWT10=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, > > > > > 1,-1))> > cont.matrix <- > > > > > > > > > > ####################################################> > > > > > ### Duplicate Correlations on duplicate spots ####> > > > > > ####################################################> > > > > > > corfit<-duplicateCorrelation(MA, ndups=2, spacing=192)> > > > > > > ####################################################> ##### Linear > > > > > Fit Model and Contrasts fit #######> > > > > > ####################################################> > > > > > > fit<-lmFit(MA, design, ndups=2, spacing=192, > > > > > cor=corfit$consensus)> > fit<-contrasts.fit(fit, cont.matrix)> > > > > > > ####################################################> > > > > > ######### eBayes Statistics ###############> #################! > > > > > ###################################> > fit<-eBayes(fit)> > > ########### > > > > >###################################################> ### Writing > > > > >the Results ######> > > > > >##############################################################> > > > > >TTnew<-topTable(fit,coef=1, number=100, adjust="BH") > > > > > > > > > > > > > > >Ana StaninskaHelmholtz-Zentrum MuenchenDepartment of Scientific > > > > >ComputingNeuherberg, Deutschland+49 (0) 89 3187 2656 > > > > > > > > > > [[alternative HTML version deleted]] > > > > > > > > > >_______________________________________________ > > > > >Bioconductor mailing list > > > > >Bioconductor at stat.math.ethz.ch > > > > >https://stat.ethz.ch/mailman/listinfo/bioconductor > > > > >Search the archives: > > > > >http://news.gmane.org/gmane.science.biology.informatics.conductor > > > > > > > > Naomi S. Altman 814-865-3791 (voice) > > > > Associate Professor > > > > Dept. of Statistics 814-863-7114 (fax) > > > > Penn State University 814-865-1348 (Statistics) > > > > University Park, PA 16802-2111 > > > > > > > > Naomi S. Altman 814-865-3791 (voice) > > Associate Professor > > Dept. of Statistics 814-863-7114 (fax) > > Penn State University 814-865-1348 (Statistics) > > University Park, PA 16802-2111 > > > > [[alternative HTML version deleted]] > >_______________________________________________ >Bioconductor mailing list >Bioconductor at stat.math.ethz.ch >https://stat.ethz.ch/mailman/listinfo/bioconductor >Search the archives: >http://news.gmane.org/gmane.science.biology.informatics.conductor Naomi S. Altman 814-865-3791 (voice) Associate Professor Dept. of Statistics 814-863-7114 (fax) Penn State University 814-865-1348 (Statistics) University Park, PA 16802-2111
ADD REPLY
0
Entering edit mode
Pete Shepard ▴ 240
@pete-shepard-3324
Last seen 10.2 years ago
[[alternative HTML version deleted]]
ADD COMMENT

Login before adding your answer.

Traffic: 852 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6