Affymetrix differential genes
0
0
Entering edit mode
@santana-sarma-3163
Last seen 10.2 years ago
Hi, While finding differential gene expression of Affymetrix data, I am unable to fix a small problem. The non-differentially regulated data are showing bigger in the subsequent MA-plot. Please correct me. Thanks, Santana = = = = = = = == = myRMA <- justRMA() number_genes <- dim(exprs(myRMA))[1] ### Filtering out uninteresting data is_control <- logical(number_genes) for (row in 1:number_genes) { if (charmatch("AFFX", rownames (exprs(myRMA))[row], nomatch=0) == 0) is_control[row] <- TRUE else is_control[row] <- FALSE } myRMA_no_controls <- myRMA[is_control] # Filtering out the least variable genes, defined by the 90th percentile of the distribution of CV-values sd_values <- apply (exprs(myRMA_no_controls), MARGIN=1, FUN="sd") mean_values <- apply (exprs(myRMA_no_controls), MARGIN=1, FUN="mean") CV_values <- sd_values/mean_values quantile_cut_off <- quantile(CV_values, probs=0.9) myRMA_filtered <- myRMA_no_controls[CV_values>quantile_cut_off] design <- cbind (Healthy = c(0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1), Diseased=c(1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)) fit <- lmFit (myRMA_filtered, design) contrasts_matrix <- makeContrasts(Healthy-Diseased, levels = design) fit2 <- contrasts.fit (fit, contrasts_matrix) fit3 <- eBayes (fit2) number_genes <- dim(exprs(myRMA_filtered))[1] test_results <- topTable(fit3, number=number_genes, adjust="BH") # False discovery rate cut off set to 0.05. FDR_cutoff <- 0.05 p_values <- fit3$p.value adjusted_p_values <- test_results$adj.P.Val # Identify significant genes : significant_genes <- test_results[test_results$adj.P.Val <= FDR_cutoff,] gene_index <- rownames(significant_genes) # MA-plot displaying the log fold change between diseased and healthy samples as a function of the average expression level across all samples. status <- character (length=number_genes) status <- rep ("not changing", number_genes) names (status) <- seq (1,number_genes,1) status [gene_index] <- "significant" plotMA (fit3, status=status, col=c("blue","pink")) # the pink data- ponits are coming relatively bigger > sessionInfo() R version 2.10.1 (2009-12-14) i386-pc-mingw32 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] hgu133acdf_2.5.0 limma_3.2.1 affycoretools_1.18.0 annaffy_1.18.0 KEGG.db_2.3.5 GO.db_2.3.5 RSQLite_0.8-4 [8] DBI_0.2-5 AnnotationDbi_1.8.0 affy_1.24.1 Biobase_2.6.0 loaded via a namespace (and not attached): [1] affyio_1.14.0 annotate_1.24.0 biomaRt_2.2.0 Biostrings_2.14.2 Category_2.12.0 gcrma_2.18.0 genefilter_1.28.0 [8] GOstats_2.12.0 graph_1.24.1 GSEABase_1.8.0 IRanges_1.4.3 preprocessCore_1.8.0 RBGL_1.22.0 RCurl_1.3-1 [15] splines_2.10.1 survival_2.35-8 tools_2.10.1 XML_2.8-1 xtable_1.5-6 [[alternative HTML version deleted]]
GO GO • 693 views
ADD COMMENT

Login before adding your answer.

Traffic: 945 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6