Query regarding Contrasts desigs
1
0
Entering edit mode
@sean-davis-490
Last seen 8 weeks ago
United States
On Thu, May 20, 2010 at 11:57 AM, varpal singh <gilvarpal@gmail.com> wrote: > Respected Sir, > Sory sir, am distruing you again, but my all results depend on it. > I'm sending you two outputs that I got, Just, I would like to know which > contrast is rigt, in two condition only ?? > *c<-makeContrasts(group2-group1,levels=design) OR ** > c<-makeContrasts(group1-group2,levels=design) > *Because i get result opposite in both cases, that you can see in these > two probe below *253416_at, 266294_at > FIRST* > library(affy) > data <- ReadAffy() > design<- model.matrix(~0+factor(c(1,1,2,2))) > colnames(design)<-c("group1", "group2") > *c<-makeContrasts(group2-group1,levels=design)* > eset <- rma(data) > fit <- lmFit(eset,design) > fit2 <- contrasts.fit(fit,c) > fit2 <- eBayes(fit2) > topTable(fit2, coef=1, adjust="fdr", number=10) > ID logFC AveExpr t P.Value > adj.P.Val B > 8516 253416_at *7.122005* 7.535481 26.57534 2.255100e-05 0.3000238 > 1.4319777 > 21394 266294_at *5.221736* 7.090044 24.38216 3.100325e-05 0.3000238 > 1.3731773 > > -------------------------------------------------------------------- ----------------------- > * > > SECOND* > design<- model.matrix(~0+factor(c(1,1,2,2))) > colnames(design)<-c("group1", "group2") > *c<-makeContrasts(group1-group2,levels=design)* > fit2 <- contrasts.fit(fit,c) > fit3 <- eBayes(fit2) > topTable(fit3, coef=1, adjust="fdr", number=10) > ID logFC AveExpr t P.Value > adj.P.Val B > 8516 253416_at *-7.122005* 7.535481 -26.57534 2.255100e-05 0.3000238 > 1.4319777 > 21394 266294_at* -5.221736* 7.090044 -24.38216 3.100325e-05 0.3000238 > 1.3731773 > > Hi, Varpal. They should be opposite, yes. Otherwise, the results should be identical and it appears that they are. Sean [[alternative HTML version deleted]]
probe probe • 775 views
ADD COMMENT
0
Entering edit mode
@sean-davis-490
Last seen 8 weeks ago
United States
On Thu, May 20, 2010 at 1:10 PM, varpal singh <gilvarpal@gmail.com> wrote: > Thanks very much for reply, > > I would like to know which contrasts is appropriate for find differential > expression genes ?? > > Because my aim to find significant genes which have fold change value less > than or greater than 2, in both cases have varibility in up regulation and > down regulation gene > > So that, am confuse to select which fold change value, i can select for my > further analysis ? > > Plz tell me which contrast I wil take ?? > > Hi, Varpal. The contrasts are equivalent. Please do use the bioconductor list--you will get the best service there. Sean > Varpall > > > On Thu, May 20, 2010 at 10:23 PM, Sean Davis <seandavi@gmail.com> wrote: > >> >> >> On Thu, May 20, 2010 at 11:57 AM, varpal singh <gilvarpal@gmail.com>wrote: >> >>> Respected Sir, >>> Sory sir, am distruing you again, but my all results depend on it. >>> I'm sending you two outputs that I got, Just, I would like to know which >>> contrast is rigt, in two condition only ?? >>> *c<-makeContrasts(group2-group1,levels=design) OR ** >>> c<-makeContrasts(group1-group2,levels=design) >>> *Because i get result opposite in both cases, that you can see in these >>> two probe below *253416_at, 266294_at >>> FIRST* >>> library(affy) >>> data <- ReadAffy() >>> design<- model.matrix(~0+factor(c(1,1,2,2))) >>> colnames(design)<-c("group1", "group2") >>> *c<-makeContrasts(group2-group1,levels=design)* >>> eset <- rma(data) >>> fit <- lmFit(eset,design) >>> fit2 <- contrasts.fit(fit,c) >>> fit2 <- eBayes(fit2) >>> topTable(fit2, coef=1, adjust="fdr", number=10) >>> ID logFC AveExpr t P.Value >>> adj.P.Val B >>> 8516 253416_at *7.122005* 7.535481 26.57534 2.255100e-05 0.3000238 >>> 1.4319777 >>> 21394 266294_at *5.221736* 7.090044 24.38216 3.100325e-05 0.3000238 >>> 1.3731773 >>> >>> ------------------------------------------------------------------ ------------------------- >>> * >>> >>> SECOND* >>> design<- model.matrix(~0+factor(c(1,1,2,2))) >>> colnames(design)<-c("group1", "group2") >>> *c<-makeContrasts(group1-group2,levels=design)* >>> fit2 <- contrasts.fit(fit,c) >>> fit3 <- eBayes(fit2) >>> topTable(fit3, coef=1, adjust="fdr", number=10) >>> ID logFC AveExpr t P.Value >>> adj.P.Val B >>> 8516 253416_at *-7.122005* 7.535481 -26.57534 2.255100e-05 0.3000238 >>> 1.4319777 >>> 21394 266294_at* -5.221736* 7.090044 -24.38216 3.100325e-05 0.3000238 >>> 1.3731773 >>> >>> >> Hi, Varpal. >> >> They should be opposite, yes. Otherwise, the results should be identical >> and it appears that they are. >> >> Sean >> > > [[alternative HTML version deleted]]
ADD COMMENT

Login before adding your answer.

Traffic: 789 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6