Question
1
0
Entering edit mode
@riki-kawaguchi-586
Last seen 10.3 years ago
Dear Bioconductor Administrators/Developers, Hello. I am a beginner of Bioconductor affy package. I found a great potential of this software and I really appreciate people who made this. I was wondering if affy package has a function to do similar analysis to MAS5.0 pairwise comparison to generate signal log ratios of PMs (not PM-MM). Thank you so much for your help! Best wishes, Riki Kawaguchi
affy affy • 664 views
ADD COMMENT
0
Entering edit mode
Laurent Gautier ★ 2.3k
@laurent-gautier-29
Last seen 10.3 years ago
On Tue, Jan 06, 2004 at 04:33:35PM -0500, Riki Kawaguchi wrote: > Dear Bioconductor Administrators/Developers, > > Hello. I am a beginner of Bioconductor affy package. I found a great > potential of this software and I really appreciate people who made this. I > was wondering if affy package has a function to do similar analysis to > MAS5.0 pairwise comparison to generate signal log ratios of PMs (not PM-MM). > Thank you so much for your help! > > Best wishes, > > Riki Kawaguchi > > _______________________________________________ > Bioconductor mailing list > Bioconductor@stat.math.ethz.ch > https://www.stat.math.ethz.ch/mailman/listinfo/bioconductor As far as I know, there is no such function. However, an 'apply-like' function was developped for this kind of work with probe sets (objects of class ProbeSet)... ...and when time it will make its way to Bioconductor CVS repository (it should be for the next release). The code for it (with the doc file) will hopefully help you to achieve what you want without too much effort. Check the example that performs t-test for each probe in probe sets. Hoping it helps, L. -- -------------------------------------------------------------- Laurent Gautier CBS, Building 208, DTU PhD. Student DK-2800 Lyngby,Denmark tel: +45 45 25 24 89 http://www.cbs.dtu.dk/laurent -------------- next part -------------- ppsetApply <- function(abatch, FUN, genenames=NULL, ...) { if (! inherits(abatch, "AffyBatch")) stop("abatch must be inheriting from class AffyBatch") if (! inherits(FUN, "function")) stop("FUN must be a function") cdfenv <- getCdfInfo(abatch) if (is.null(genenames)) genenames <- ls(cdfenv) ## e1 <- new.env(parent = environment(FUN)) multiassign(names(pData(abatch)), pData(abatch), env = e1) environment(FUN) <- e1 ppset <- new("ProbeSet", pm=matrix(), mm=matrix()) r <- vector("list", length=length(genenames)) names(r) <- genenames for (i in seq(along=genenames)) { ## use multiget to get NA when genenames[i] not found probes.i <- multiget(genenames[i], envir = cdfenv)[[1]] if allis.na(probes.i))) next ppset@pm <- intensity(abatch)[probes.i[, 1], , drop=FALSE] ppset@mm <- intensity(abatch)[probes.i[, 2], , drop=FALSE] ppset@id <- genenames[i] r[[i]] <- FUN(ppset, ...) } return(r) } ppsetClusterApply <- function(abatch, FUN, genenames=NULL, ...) { if (! inherits(abatch, "AffyBatch")) stop("abatch must be inheriting from class AffyBatch") if (! inherits(FUN, "function")) stop("FUN must be a function") cdfenv <- getCdfInfo(abatch) if (is.null(genenames)) genenames <- ls(cdfenv) ## e1 <- new.env(parent = environment(FUN)) multiassign(names(pData(abatch)), pData(abatch), env = e1) environment(FUN) <- e1 ppset <- new("ProbeSet", pm=matrix(), mm=matrix()) r <- vector("list", length=length(genenames)) names(r) <- genenames for (i in seq(along=genenames)) { ## use multiget to get NA when genenames[i] not found probes.i <- multiget(genenames[i], envir = cdfenv)[[1]] if allis.na(probes.i))) next ppset@pm <- intensity(abatch)[probes.i[, 1], , drop=FALSE] ppset@mm <- intensity(abatch)[probes.i[, 2], , drop=FALSE] ppset@id <- genenames[i] r[[i]] <- FUN(ppset, ...) } return(r) } ppset.ttest <- function(ppset, covariate, pmcorrect.fun = pmcorrect.pmonly, ...) { probes <- do.call("pmcorrect.fun", list(ppset)) my.ttest <- function(x) { y <- split(x, get(covariate)) t.test(y[[1]], y[[2]])$p.value } r <- apply(probes, 1, my.ttest) return(r) } # make.ppset.logitt <- function(abatch) { # ppset.logitt <- function(ppset, covariate, pmcorrect.fun = pmcorrect.pmonly, A, N) { # probes <- do.call("pmcorrect.fun", list(ppset)) # probes.logit <- # } # return(ppset.logitt) # } -------------- next part -------------- \name{ppsetApply} \alias{ppsetApply} \title{ Apply a function over the ProbeSets in an AffyBatch } \description{ Apply a function over the ProbeSets in an AffyBatch } \usage{ ppsetApply(abatch, FUN, genenames = NULL, ...) ppset.ttest(ppset, covariate, pmcorrect.fun = pmcorrect.pmonly, ...) } \arguments{ \item{abatch}{ An object inheriting from \code{AffyBatch}.} \item{FUN}{ A function working on a \code{ProbeSet} } \item{genenames}{ A list of Affymetrix probesets ids to work with. All probe set ids used when \code{NULL}.} \item{\dots}{ Optional parameters to the function \code{FUN} } } \details{ } \value{ Returns a \code{list} of objects, or values, as returned by the function \code{FUN} for each \code{ProbeSet} it processes. } \author{Laurent Gautier <laurent@cbs.dtu.dk>} \seealso{\code{\link[affy]{ProbeSet-class}} } \examples{ ppset.ttest <- function(ppset, covariate, pmcorrect.fun = pmcorrect.pmonly, ...) { probes <- do.call("pmcorrect.fun", list(ppset)) my.ttest <- function(x) { y <- split(x, get(covariate)) t.test(y[[1]], y[[2]])$p.value } r <- apply(probes, 1, my.ttest) return(r) } ## craft a dataset data(affybatch.example) abatch <- merge(affybatch.example, affybatch.example) intensity(abatch) <- jitter(intensity(abatch)) chip.variate <- c("a", "b", "a", "a", "b", "a", "a") pData(abatch) <- data.frame(whatever = chip.variate) ## run a test over _all_ probes. all.ttest <- ppsetApply(abatch, ppset.ttest, covariate="whatever") } \keyword{ manip }
ADD COMMENT

Login before adding your answer.

Traffic: 788 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6