Entering edit mode
Edwin Groot
▴
230
@edwin-groot-3606
Last seen 10.3 years ago
Hello all,
I am analyzing Affymetrix AtTile1F ChIP-chip data from GEO to compare
the localization of different histone modifications in Arabidopsis.
The
goal is to query a genomic region for relative enrichment of the
different histone modifications.
After trying several normalization methods in Starr, I get good MA
plots, densities and histograms, but neither the GC-bias, nor the
base-position bias is changed by any normalization method. The
vignette
data, in contrast, shows great improvement in the bias problems. Have
I
missed something? Should I worry about this?
I have so far tried loess, vsn, quantile and rankpercentile through
Starr.
Thanks,
Edwin
--
Here is sample code for one of the normalization methods:
> library(Starr)
> library(geneplotter)
> library(vsn)
> AtTile1F <- readBpmap("GPL1979.bpmap")
#Only the + strand is represented for all chromosomes
> summary(AtTile1F$"At:TIGRv5;chr4"$strand)
> cels <- c("h3k27me301.CEL", "h3k27me303.CEL", "h3k27me302.CEL",
"h3k27me304.CEL", "input01.CEL", "input03.CEL", "input02.CEL",
"input04.CEL")
> names <- c("k27me301", "k27me302", "k27me303", "k27me304",
"input01",
"input02", "input03", "input04")
> type <- c("IP", "IP", "IP", "IP", "INPUT", "INPUT", "INPUT",
"INPUT")
> k27me3 <- readCelFile(AtTile1F, cels, names, type, featureData=TRUE,
log.it=TRUE)
#Normalize
> k27me3_loess <- normalize.Probes(k27me3, method = "loess")
#QC
#Try only one pair of IP and control.
> ips <- c(TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE)
> controls <- c(FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE)
> plotMA(k27me3, ip = ips, control = controls)
#There is a negative deviation down to -1.5 LFC
> plotMA(k27me3_loess, ip = ips, control = controls)
#The MA is straight, except for a slight negative bias at highest
intensity.
> plotGCbias(exprs(k27me3)[, 1], featureData(k27me3)$seq,
main=paste(sampleNames(k27me3)[1],"GC Bias Before Normalization"))
#The GC bias increases linearly with base position.
> plotGCbias(exprs(k27me3_loess)[, 1], featureData(k27me3_loess)$seq,
main=paste(sampleNames(k27me3_loess)[1],"GC Bias After Loess
Normalization"))
#Same rise (-2 to +2) with base position as Before Normalization.
--
> sessionInfo()
R version 2.11.1 (2010-05-31)
x86_64-pc-linux-gnu
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats graphics grDevices datasets utils
methods
[8] base
other attached packages:
[1] vsn_3.16.0 geneplotter_1.26.0 annotate_1.26.0
[4] AnnotationDbi_1.10.1 Starr_1.4.4 affxparser_1.20.0
[7] affy_1.26.1 Ringo_1.12.0 Matrix_0.999375-40
[10] lattice_0.18-8 limma_3.4.3 RColorBrewer_1.0-2
[13] Biobase_2.8.0
loaded via a namespace (and not attached):
[1] affyio_1.16.0 DBI_0.2-5 genefilter_1.30.0
[4] MASS_7.3-6 preprocessCore_1.10.0 pspline_1.0-14
[7] RSQLite_0.9-1 splines_2.11.1 survival_2.35-8
[10] xtable_1.5-6
Dr. Edwin Groot, postdoctoral associate
AG Laux
Institut fuer Biologie III
Schaenzlestr. 1
79104 Freiburg, Deutschland
+49 761-2032945