Entering edit mode
Jakob Hedegaard
▴
170
@jakob-hedegaard-823
Last seen 10.2 years ago
Hi,
I wonder how to analyze a RNA-Seq dataset of a time-series experiment.
The dataset origin from a challenge experiment with 4-6 samples per
time point (T00,T06,T12,T24 and T48) from two series of challenge
(with one of two different serotypes). In total 48 individual samples
and two factors, time and serotype (see the table below for details)
RNA-Seq profiles have been obtained using Illumina GAIIx with
multiplexing.
I have used edgeR (the Cox-Reid and GLM method) to obtain the genes
significantly affected to each time point relative to time zero (e.g.
T12-T00) - thus initially ignoring the potential difference between
the serotypes.
But how can I obtain the genes significantly affected across the
different contrastes?
group lib.size norm.factors serotype time
AP_01 control 3734226 1.0575860 con T00
AP_02 control 4528260 1.0581673 con T00
AP_03 control 3648163 1.0594602 con T00
AP_28 control 4671178 1.0430147 con T00
AP_29 control 3746020 1.0528085 con T00
AP_30 control 4471915 1.1277386 con T00
AP_31 AP6.T06 7384334 0.9187757 AP6 T06
AP_32 AP6.T06 3649621 0.9035999 AP6 T06
AP_33 AP6.T06 5644324 0.8929802 AP6 T06
AP_34 AP6.T06 3791540 0.9396600 AP6 T06
AP_36 AP6.T06 3922243 0.8524249 AP6 T06
AP_37 AP6.T12 3113854 1.0491183 AP6 T12
AP_38 AP6.T12 2153867 1.0996506 AP6 T12
AP_39 AP6.T12 2979503 1.0905274 AP6 T12
AP_40 AP6.T12 5375493 1.0420513 AP6 T12
AP_41 AP6.T12 3769654 0.9094147 AP6 T12
AP_42 AP6.T12 2621303 1.1272673 AP6 T12
AP_43 AP6.T24 3537847 1.0037276 AP6 T24
AP_44 AP6.T24 3660552 1.0757808 AP6 T24
AP_45 AP6.T24 3284038 1.0701603 AP6 T24
AP_46 AP6.T24 3250374 1.0230341 AP6 T24
AP_47 AP6.T24 7208387 0.9535068 AP6 T24
AP_48 AP6.T24 4169075 0.9730747 AP6 T24
AP_49 AP6.T48 5989902 0.9825794 AP6 T48
AP_50 AP6.T48 3529028 0.9471979 AP6 T48
AP_51 AP6.T48 5104071 1.0772029 AP6 T48
AP_53 AP6.T48 4823387 0.9710606 AP6 T48
AP_54 AP6.T48 3788201 1.0976409 AP6 T48
AP_55 AP2.T06 4919578 0.7872065 AP2 T06
AP_56 AP2.T06 4580068 0.9533078 AP2 T06
AP_57 AP2.T06 3908180 0.9193207 AP2 T06
AP_58 AP2.T06 3466801 0.9887874 AP2 T06
AP_59 AP2.T06 4267998 0.8769085 AP2 T06
AP_60 AP2.T12 4533905 0.9058305 AP2 T12
AP_62 AP2.T12 5906089 0.9352388 AP2 T12
AP_63 AP2.T12 3676318 1.1260072 AP2 T12
AP_64 AP2.T12 2206081 1.0579246 AP2 T12
AP_65 AP2.T12 3955338 1.0221930 AP2 T12
AP_66 AP2.T12 3775918 0.9300664 AP2 T12
AP_67 AP2.T24 3853681 0.9659259 AP2 T24
AP_69 AP2.T24 3761829 0.9592286 AP2 T24
AP_70 AP2.T24 4263273 1.0742397 AP2 T24
AP_71 AP2.T24 4736798 0.9864702 AP2 T24
AP_72 AP2.T24 6387114 1.0462401 AP2 T24
AP_73 AP2.T48 3389351 1.0303610 AP2 T48
AP_75 AP2.T48 1489023 1.1863821 AP2 T48
AP_76 AP2.T48 3588175 1.0250639 AP2 T48
AP_78 AP2.T48 3848562 0.9855582 AP2 T48
sessionInfo()
R version 2.12.0 (2010-10-15)
Platform: x86_64-pc-mingw32/x64 (64-bit)
locale:
[1] LC_COLLATE=Danish_Denmark.1252 LC_CTYPE=Danish_Denmark.1252
LC_MONETARY=Danish_Denmark.1252 LC_NUMERIC=C
LC_TIME=Danish_Denmark.1252
attached base packages:
[1] grDevices datasets splines graphics stats tcltk utils
methods base
other attached packages:
[1] edgeR_1.8.2 svSocket_0.9-50 TinnR_1.0.3 R2HTML_2.2
Hmisc_3.8-3 survival_2.35-8
loaded via a namespace (and not attached):
[1] cluster_1.13.1 grid_2.12.0 lattice_0.19-13 limma_3.6.6
svMisc_0.9-60 tools_2.12.0
Best regards
Jakob Hedegaard
Project scientist
?
AARHUS UNIVERSITY
Faculty of Agricultural Sciences
Dept. of Genetics and Biotechnology
Blichers All? 20, P.O. BOX 50
DK-8830?Tjele
Denmark