Entering edit mode
@jordi-altirriba-gutierrez-682
Last seen 6.1 years ago
Dear Heidi and Bioconductor users,
I am Jordi Altirriba from the Centre M?dical Universitaire, in Gen?ve,
Switzerland. I have been using the R package HTqPCR, which I have
found really useful.
I have been working with Taq Man Low Density Arrays from Applied
Biosystems (two different plates, A and B) to measure the miRNA
expression of different samples and I have been looking to the
distribution of the samples through the plotCtCategory and
plotCtDensity to detect any outlier.
Whereas the results with plotCtCategory and plotCtDensity where
consistent in the first serie of experiments (all the graphs can be
downloaded from the link below), in the second serie it was
inconsistent, meaning that in the plotCtCategory we can observe a
?different? behaviour in the samples 39B, 41B and 42B whereas in the
plotCtDensity we can observe that samples 40B, 26B, 30B and 12B show a
different behaviour.
For this reason I redid the density graphs modifying the parameter
bandwith in the density function, now observing that samples seems to
be more homogeneus than what it seemed with ploCtDensity and more in
accordance with what is observed in plotCtCategory.
Is this modification correct or am I missng something? (sorry for my
small knowledge in statistics).
Below is the code used and the session info.
Thanks,
Jordi Altirriba
Link for images: http://dl.dropbox.com/u/7491875/resultados.ppt
Code:
Plate A
library("HTqPCR")
files<-read.delim("files.txt")raw<-readCtData(files=files$File,path=ge
twd(), n.features = 384, flag = 2, feature = 4, type = 5, position =
1, Ct = 6, header = T, SDS = FALSE, na.value = 40)
raw.cat<-setCategory(raw,groups=files$Treatment)
plotCtCategoryraw.cat)
plotCtDensity(raw, cex=0.6, lwd=1)
for (x in 1:30)
{plot(density(exprs(raw)[,x],bw=0.1), col=x, lty=x, ylim=c(0,5),
xlim=c(0,40))
par(new=T)}
legend(0,5,colnames(exprs(raw)), cex=0.7,lty=c(1:30), col=c(1:30))
for (x in 1:30)
{plot(density(exprs(raw)[,x],bw=0.1), col=x, lty=x, ylim=c(0,5),
xlim=c(39,40))
par(new=T)}
legend(39,5,colnames(exprs(raw)), cex=0.7,lty=c(1:30), col=c(1:30))
plotCtHeatmap(raw,gene.names="",dist="euclidean")
Plate B
library("HTqPCR")
files<-read.delim("files.txt")raw<-readCtData(files=files$File,path=ge
twd(), n.features = 384, flag = 2, feature = 4, type = 5, position =
1, Ct = 6, header = T, SDS = FALSE, na.value = 40)
raw.cat<-setCategory(raw,groups=files$Treatment)
plotCtCategoryraw.cat)
plotCtDensity(raw, cex=0.6, lwd=1)
for (x in 1:28)
{plot(density(exprs(raw)[,x],bw=0.1), col=x, lty=x, ylim=c(0,5),
xlim=c(0,40))
par(new=T)}
legend(0,5,colnames(exprs(raw)), cex=0.8,lty=c(1:28), col=c(1:28))
for (x in 1:28)
{plot(density(exprs(raw)[,x],bw=0.1), col=x, lty=x, ylim=c(0,5),
xlim=c(39,40))
par(new=T)}
legend(39,5,colnames(exprs(raw)), cex=0.8,lty=c(1:28), col=c(1:28))
plotCtHeatmap(raw,gene.names="",dist="euclidean")
sessionInfo()
R version 2.12.0 (2010-10-15)
Platform: i386-pc-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=Spanish_Spain.1252 LC_CTYPE=Spanish_Spain.1252
[3] LC_MONETARY=Spanish_Spain.1252 LC_NUMERIC=C
[5] LC_TIME=Spanish_Spain.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] HTqPCR_1.4.0 limma_3.6.9 RColorBrewer_1.0-2 Biobase_2.10.0
loaded via a namespace (and not attached):
[1] affy_1.28.0 affyio_1.18.0 gdata_2.8.1
[4] gplots_2.8.0 gtools_2.6.2 preprocessCore_1.12.0