Problems in limma package
1
0
Entering edit mode
Binita Dutta ▴ 100
@binita-dutta-622
Last seen 10.3 years ago
Dear All, I have done cDNA microarray (dye swap) experiments (two repeats) with samples from wild type and mutant mice(experiment is very similar to Swirl experiment given in tutorials). I tried normalising data with "limma" package with following commands: library(limma) Warning message: package limma was built under R version 1.8.1 RG<-read.maimages(files=c("binita1.txt","binita2.txt","binita3.txt","b inita4.txt"), columns=list(Rf = "CH1_NBC_INT", Rb = "CH1_SPOT_BKGD", Gf = "CH2_NBC_INT", Gb = "CH2_SPOT_BKGD", Name="GENE_DESCRIPTION",verbose=TRUE,sep=" \t", quote = "\"'", dec = ".")) RG$genes<-read.table("binitaSample2.txt", sep="\t",header=TRUE, quote = "\"'",fill=TRUE) layout=list(ngrid.r=2,ngrid.c=12,nspot.r=45,nspot.c=21) RG$printer<-layout RG<-backgroundCorrect(RG, method="minimum") MA<-normalizeWithinArrays(RG,layout=RG$printer) plotMA(MA) As expected, I get MA plot However, when i try normalising the data between the arrays with following commands: MA<-normalizeBetweenArrays(MA) plotMA(MA) The graph flips (if you want i can send graphs) i.e X axis is reversed design<-c(-1,1,-1,1) fit<-lmFit(MA,design) fit<-eBayes(fit) qqt(fit$t,df=fit$df.prior+fit$df.residual,pch=16,cex=0.1) top<-topTable(fit,number=22680,adjust="fdr") ord<-order(fit$lods,decreasing=TRUE) top30<-ord[1:30] plot(A,M,pch=16,cex=0.1) text(A[top30],M[top30],labels=MA$genes[top30,"SPOT.LABEL"],cex=0.8,col ="blue") I get following errors: 1) P.Values which i obtain is 1 or above 1, i tried adjusting P.Value with "Holms" etc but get the same result. However, the same experiment when i analyse thorugh other progams, the P.Values are very less (less than 0.001) for differentially expressed genes. 3) i have problems in subseting topTables also. subset<-subset(topTable,P.Value<0.01,select=MA$genes) Error in subset.default(topTable, P.Value < 0.01, select = MA$genes) : Object "P.Value" not found 2)on MA plot i want to highlight the top 30 genens with "SPOT LABEL" which is there on MA$genes, but the program picks up some number which does not corresonds to the SPOT.LABEL. I have shown here, top 10 genes SPOT.LABEL CIU CLONE.ID M A t P.Value B 4459 4459 MM6 25179 1.91 1.627766 11.18 1 -2.82 14466 14466 MM6 14674 1.62 0.695737 10.35 1 -2.84 17413 17413 MM6 17720 2.48 -1.036538 10.08 1 -2.85 21140 21140 MM6 16316 1.57 0.000431 9.80 1 -2.85 18070 18070 MM6 9920 1.61 1.888210 9.61 1 -2.86 776 776 MM6 27323 1.72 1.873411 9.45 1 -2.86 12014 12014 MM6 25084 1.74 1.226841 9.43 1 -2.87 19423 19423 MM6 20962 -1.44 4.009106 -9.22 1 -2.87 17258 17258 MM6 13529 2.31 0.289187 9.06 1 -2.88 21565 21565 MM6 27496 1.60 1.794250 8.78 1 -2.89 Help in this regards will be highly appreciated. Sincerely yours, Binita ============================== Binita Dutta, PhD MicroArray Facility(MAF) UZ Gasthuisberg Onderwijs en Navorsing Herestraat 49 3000 Leuven Belgium
Microarray graph limma Microarray graph limma • 984 views
ADD COMMENT
0
Entering edit mode
@gordon-smyth
Last seen 2 hours ago
WEHI, Melbourne, Australia
At 10:19 PM 30/03/2004, Binita Dutta wrote: >Dear All, > >I have done cDNA microarray (dye swap) experiments (two repeats) with >samples from wild type and mutant mice(experiment is very similar to >Swirl experiment given in tutorials). I tried normalising data with >"limma" package with following commands: >library(limma) >Warning message: >package limma was built under R version 1.8.1 >RG<-read.maimages(files=c("binita1.txt","binita2.txt","binita3.txt"," binita4.txt"), >columns=list(Rf = "CH1_NBC_INT", Rb = "CH1_SPOT_BKGD", Gf = "CH2_NBC_INT", >Gb = "CH2_SPOT_BKGD", Name="GENE_DESCRIPTION",verbose=TRUE,sep=" >\t", quote = "\"'", dec = ".")) > RG$genes<-read.table("binitaSample2.txt", sep="\t",header=TRUE, quote = > "\"'",fill=TRUE) >layout=list(ngrid.r=2,ngrid.c=12,nspot.r=45,nspot.c=21) > RG$printer<-layout > RG<-backgroundCorrect(RG, method="minimum") > MA<-normalizeWithinArrays(RG,layout=RG$printer) >plotMA(MA) >As expected, I get MA plot > >However, when i try normalising the data between the arrays with >following commands: >MA<-normalizeBetweenArrays(MA) > plotMA(MA) >The graph flips (if you want i can send graphs) > >i.e X axis is reversed This doesn't make any sense to me, I don't think there is any way that the X axis could reverse. You would have to provide some evidence that something is wrong. >design<-c(-1,1,-1,1) > >fit<-lmFit(MA,design) >fit<-eBayes(fit) > qqt(fit$t,df=fit$df.prior+fit$df.residual,pch=16,cex=0.1) >top<-topTable(fit,number=22680,adjust="fdr") >ord<-order(fit$lods,decreasing=TRUE) >top30<-ord[1:30] >plot(A,M,pch=16,cex=0.1) >text(A[top30],M[top30],labels=MA$genes[top30,"SPOT.LABEL"],cex=0.8,co l="blue") >I get following errors: > >1) P.Values which i obtain is 1 or above 1, i tried adjusting P.Value with >"Holms" etc but get the same result. However, the same experiment when i >analyse thorugh other progams, the P.Values are very less (less than >0.001) for differentially expressed genes. The obvious explanation is that you have assigned treatments incorrectly, e.g., your design matrix is wrong. Are you saying that *all* of your p.values are equal to 1? Are you claiming that you have p.values above 1? As far as I know, that cannot occur. >3) i have problems in subseting topTables also. >subset<-subset(topTable,P.Value<0.01,select=MA$genes) >Error in subset.default(topTable, P.Value < 0.01, select = MA$genes) : > Object "P.Value" not found You are trying to subset a function rather than a data.frame! The *output* from topTable() would be a data.frame. In any case, have you considered using topTable with a smaller 'number' to do what you want? >2)on MA plot i want to highlight the top 30 genens with "SPOT LABEL" which >is there on MA$genes, but the program picks up some number which does not >corresonds to the SPOT.LABEL. This is most likely because your SPOT.LABEL is a factor rather than a character vector. Try setting MA$genes$SPOT.LABEL <- as.character(MA$genes$SPOT.LABEL) Gordon >I have shown here, top 10 genes >SPOT.LABEL CIU CLONE.ID M A t P.Value B >4459 4459 MM6 25179 1.91 1.627766 11.18 1 -2.82 >14466 14466 MM6 14674 1.62 0.695737 10.35 1 -2.84 >17413 17413 MM6 17720 2.48 -1.036538 10.08 1 -2.85 >21140 21140 MM6 16316 1.57 0.000431 9.80 1 -2.85 >18070 18070 MM6 9920 1.61 1.888210 9.61 1 -2.86 >776 776 MM6 27323 1.72 1.873411 9.45 1 -2.86 >12014 12014 MM6 25084 1.74 1.226841 9.43 1 -2.87 >19423 19423 MM6 20962 -1.44 4.009106 -9.22 1 -2.87 >17258 17258 MM6 13529 2.31 0.289187 9.06 1 -2.88 >21565 21565 MM6 27496 1.60 1.794250 8.78 1 -2.89 > >Help in this regards will be highly appreciated. >Sincerely yours, >Binita > >============================== > >Binita Dutta, PhD >MicroArray Facility(MAF) >UZ Gasthuisberg >Onderwijs en Navorsing >Herestraat 49 >3000 Leuven >Belgium > >_______________________________________________ >Bioconductor mailing list >Bioconductor@stat.math.ethz.ch >https://www.stat.math.ethz.ch/mailman/listinfo/bioconductor
ADD COMMENT

Login before adding your answer.

Traffic: 632 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6