Entering edit mode
wang peter
★
2.0k
@wang-peter-4647
Last seen 10.3 years ago
dear all:
i have a question how to design model in DESeq.
my data is composed of 35 samples, have two factor
time and treatment
i want to find DE genes cross the time, considering control
how to design the model?
such is my coding.
counts <- read.table("expression-table.txt",row.names=1)
design<- data.frame(row.names=colnames(counts), treatment=
c(rep('control',6),rep('treated',24),rep('control',5)), time=
c('0h','0h','0h','24h','24h','24h','0h','0h','0h','6h','6h','6h','6h',
'12h','12h','12h','12h','18h','18h','18h','18h',
'24h','24h','24h','36h','36h','36h','48h','48h','48h','6h
','12h','18h','36h','48h'))
cds <- newCountDataSet(counts, design
cds <- estimateSizeFactors(cds)
cds <- estimateDispersions(cds)
fit1 <-fitNbinomGLMs(cds, count ~ treatment + time)
fit0 <-fitNbinomGLMs(cds, count ~ treatment)
pvalsGLM <-nbinomGLMTest(fit1, fit0)
padjGLM <-p.adjust(pvalsGLM, method = "BH")
--
shan gao
Room 231(Dr.Fei lab)
Boyce Thompson Institute
Cornell University
Tower Road, Ithaca, NY 14853-1801
Office phone: 1-607-254-1267(day)
Official email:sg839 at cornell.edu
Facebook:http://www.facebook.com/profile.php?id=100001986532253