Entering edit mode
Jorge Miró
▴
160
@jorge-miro-5469
Last seen 10.4 years ago
Hi,
I have run the commands below to get an analysis of differential
expressions in my Affymetrix arrays
#Prepare the design and contrast matrices for my comparisons of the
three
groups in a loop-manner.
> design<- model.matrix(~0+factor(c(1,1,1,2,2,2,3,3,3)))
> colnames(design)<- c('GroupA', 'GroupB', 'GroupC')
> contrast.matrix<- makeContrasts(GroupB-GroupA, GroupC-GroupA,
GroupC-GroupB, levels=design)
#Check design and contrast matrices
> design
GroupA GroupB GroupC
1 1 0 0
2 1 0 0
3 1 0 0
4 0 1 0
5 0 1 0
6 0 1 0
7 0 0 1
8 0 0 1
9 0 0 1
attr(,"assign")
[1] 1 1 1
attr(,"contrasts")
attr(,"contrasts")$`factor(c(1, 1, 1, 2, 2, 2, 3, 3, 3))`
[1] "contr.treatment"
> contrast.matrix
Contrasts
Levels GroupB - GroupA GroupC - GroupA GroupC - GroupB
GroupA -1 -1 0
GroupB 1 0 -1
GroupC 0 1 1
#Fitting the eset to to the design and contrast
> fit <- lmFit(exprs, design)
> fit2 <- contrasts.fit(fit, contrast.matrix)
#Computing the statistics
> fit2 <- eBayes(fit2)
Then I check the results with topTable and get the following columns
in the
output
> topTable(fit2)
GroupB...GroupA GroupC...GroupA GroupC...GroupB AveExpr
F
P.Value adj.P.Val
25031 2.3602203 2.4273830 0.06716267 5.021412
29.06509
7.844834e-05 0.9587773
12902 -0.4572897 -0.5680943 -0.11080467 7.516681
25.41608
1.365021e-04 0.9587773
7158 -0.4478660 -0.4296077 0.01825833 7.057833
23.48871
1.880100e-04 0.9587773
18358 -0.1002647 0.3304903 0.43075500 7.352807
22.78417
2.125096e-04 0.9587773
28768 -0.7695883 -1.3837750 -0.61418667 3.983044
22.47514
2.244612e-04 0.9587773
28820 -0.1708800 -0.9939680 -0.82308800 5.470826
18.25071
5.081473e-04 0.9587773
15238 -0.4850297 -0.4658157 0.01921400 7.071662
17.15191
6.440979e-04 0.9587773
24681 -0.3759717 -0.3486450 0.02732667 9.281578
16.47813
7.493077e-04 0.9587773
19246 -0.8675393 -0.5082140 0.35932533 8.123538
16.27776
7.845150e-04 0.9587773
28808 0.2601277 0.6909140 0.43078633 4.814602
16.21283
7.963487e-04 0.9587773
I want to export my results and write
> results <- decideTests(fit2)
> write.fit(fit2, results, "limma_results.txt", adjust="BH")
Now don't get the same columns as when using topTable which is quite
confusing. Why don't I get the FC for the comparisons between the
different
groups as if I run topTable with the coef parameter ( "topTable(fit2,
coef=1)" )? The columns I get are the following
A
Coef.GroupB - GroupA
Coef.GroupC - GroupA
Coef.GroupC - GroupB
t.GroupB - GroupA
t.GroupC - GroupA
t.GroupC - GroupB
p.value.GroupB - GroupA
p.value.GroupC - GroupA
p.value.GroupC - GroupB
p.value.adj.GroupB - GroupA
p.value.adj.GroupC - GroupA
p.value.adj.GroupC - GroupB
F
F.p.value
Res.GroupB - GroupA
Res.GroupC - GroupA
Res.GroupC - GroupB
Could some body please try to explain what do the columns A, Coef, F,
F.p.value and Res mean?
#Session info
> sessionInfo()
R version 2.15.0 (2012-03-30)
Platform: i386-pc-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=Swedish_Sweden.1252 LC_CTYPE=Swedish_Sweden.1252
LC_MONETARY=Swedish_Sweden.1252 LC_NUMERIC=C
LC_TIME=Swedish_Sweden.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] limma_3.12.1 Biobase_2.16.0 BiocGenerics_0.2.0
loaded via a namespace (and not attached):
[1] affylmGUI_1.30.0 IRanges_1.14.4 oneChannelGUI_1.22.10
stats4_2.15.0 tcltk_2.15.0
>
Best regards
JMA
[[alternative HTML version deleted]]