Entering edit mode
Marcelo
▴
10
@marcelo-5701
Last seen 11.2 years ago
Hello all,
My question is rather similar to one that was asked back in 2010 (
http://article.gmane.org/gmane.comp.lang.r.sequencing/1663/match=edgeR
+time+serie
)
I have an RNA Seq experiment with 2 replicates of 8 time points with
both a
control and treatment conditions. Time point 0 however represents the
culture prior to any experimental treatment (control or test)
----------------------------------------------
Control 4hr,8hr,12hr,16hr,20hr,24hr,48hr
0hr<
Treatment 4hr,8hr,12hr,16hr,20hr,24hr,48hr
-----------------------------------------------
My previous approach in my analysis was to duplicate the 0hr data
point to
create a control and treatment variation:
-------------------------------------------------
Control 0hr,4hr,8hr,12hr,16hr,20hr,24hr,48hr
vs
Treatment 0hr,4hr,8hr,12hr,16hr,20hr,24hr,48hr
-------------------------------------------------
While this allowed me to get preliminary results it is clearly not the
best
approach to take.
What design and what glm coefficients do I use to properly determine
the
difference between Control and treatment conditions over time?
Below I am placing my previous R code. Please excuse me if you find it
to
be crude, I am very much a beginner:
>counttable <- read.csv("~/Desktop/Countsdata.csv", header=T,
row.names=1)
>meta <-
data.frame(row.names=colnames(counttable),treat=c("A","A","A","A","A",
"A","A","A","A","A","A","A","A","A","A","A","B","B","B","B","B","B","B
","B","B","B","B","B","B","B","B","B"),time=c("0","0","1","1","2","2",
"3","3","4","4","5","5","6","6","7","7","0","0","1","1","2","2","3","3
","4","4","5","5","6","6","7","7"))
>group <- factor(paste(meta$treat,meta$time,sep="."))
>meta$treat <-relevel(meta$treat,ref="A")
>cbind(meta,group=group)
>design <- model.matrix(~treat * time, data=meta)
>y <- DGEList(counts=counttable, group=group)
>y <- calcNormFactors(y)
>y <- estimateGLMCommonDisp(y, design)
>y <- estimateGLMTrendedDisp(y, design)
>y <- estimateGLMTagwiseDisp(y, design)
>fit <- glmFit(y,design)
>lrt <-glmLRT(fit, coef=10:16)
----------------------------------------------------------------------
----------
Here is y$samples:
group lib.size norm.factors
A.0.r1 A.0 6081748 1.0384312
A.0.r2 A.0 17974722 0.9427160
A.1.r1 A.1 8370706 1.0130071
A.1.r2 A.1 6212810 0.9273912
A.2.r1 A.2 10982891 1.1070712
A.2.r2 A.2 12331217 0.9592652
A.3.r1 A.3 10477416 1.1163213
A.3.r2 A.3 10011161 0.9715542
A.4.r1 A.4 7501092 1.0879016
A.4.r2 A.4 11169341 0.9939979
A.5.r1 A.5 4847337 1.1255744
A.5.r2 A.5 8984091 0.9484228
A.6.r1 A.6 4335731 1.1164633
A.6.r2 A.6 11960287 0.9137765
A.7.r1 A.7 38520089 1.0384443
A.7.r2 A.7 17030636 0.7711532
B.0.r1 B.0 6081748 1.0384312
B.0.r2 B.0 17974722 0.9427160
B.1.r1 B.1 6544497 1.0382895
B.1.r2 B.1 19784146 0.9356031
B.2.r1 B.2 10151511 1.0821488
B.2.r2 B.2 11254387 1.0013111
B.3.r1 B.3 11721983 1.1303817
B.3.r2 B.3 5900819 0.9468124
B.4.r1 B.4 8292623 1.0678621
B.4.r2 B.4 15323563 0.9716106
B.5.r1 B.5 2840820 1.0969923
B.5.r2 B.5 4515291 0.9427365
B.6.r1 B.6 11301780 1.0919644
B.6.r2 B.6 15830412 0.9406934
B.7.r1 B.7 33395846 1.0560019
B.7.r2 B.7 19404854 0.7798291
Thank you all in advance for your help,
Marcelo Pomeranz Ph.D.
Post Doc The Ohio State University
[[alternative HTML version deleted]]
