Differences in results analyzing Mouse Gene 1.0-ST using oligo and affy package
1
0
Entering edit mode
Jon Toledo ▴ 20
@jon-toledo-5758
Last seen 10.6 years ago
Dear Bioconductor List, I have repeated my workflow using the affy and oligo package alternatively followed by the limma package to analyze and experiment with two conditions using Mouse Gene 1.0-ST chips and I arrive to different results. I have been looking online and found that at least for the for the Mouse Gene 1.1-ST the oligo package is preferred, but not anything clear for Mouse Gene 1.0-ST . I attach below my code and session info: A) For running affy: library(affy) library(pd.mogene.1.0.st.v1) library(mogene10sttranscriptcluster.db) cellist=list.celfiles(full.names=T) cellistD14=grep("CD1...14",cellist,value=T) esetD14<- justRMA(filenames=gsub("\./","",cellistD14)) B) For runnign oligo: library(oligo) library(pd.mogene.1.0.st.v1) library(mogene10sttranscriptcluster.db) cellist=list.celfiles(full.names=T) cellistD14=grep("CD1...14",cellist,value=T) rsetD14=read.celfiles(cellistD14) esetpD14=rma(rsetD14,target="probeset") esetD14=rma(rsetD14,target="core") C) Finally running the same analysis: designD14<-read.delim('designD14.txt') contrast.matrix=model.matrix(~treatment,data=designD14) library(limma) fit <- lmFit(esetD14, contrast.matrix) fit <- eBayes(fit,proportion=0.01) m1=topTable(fit, coef="treatment",number=1e8,adjust.method="BH") m1=m1[,c("ID","logFC","P.Value","adj.P.Val")] m1=cbind(m1[,1:2],FCTreat=2**m1[,2],PTreat=m1[,3],adj.PTreat=m1[,4]) > sessionInfo() (This is for the affy run) R version 2.15.2 (2012-10-26) Platform: x86_64-w64-mingw32/x64 (64-bit) locale: [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252 [4] LC_NUMERIC=C LC_TIME=English_United States.1252 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] mogene10stv1cdf_2.11.0 limma_3.14.4 mogene10sttranscriptcluster.db_8.0.1 [4] org.Mm.eg.db_2.8.0 AnnotationDbi_1.20.3 pd.mogene.1.0.st.v1_3.8.0 [7] oligo_1.22.0 oligoClasses_1.20.0 RSQLite_0.11.2 [10] DBI_0.2-5 affy_1.36.1 Biobase_2.18.0 [13] BiocGenerics_0.4.0 loaded via a namespace (and not attached): [1] affxparser_1.30.2 affyio_1.26.0 BiocInstaller_1.8.3 Biostrings_2.26.3 bit_1.1-9 codetools_0.2-8 [7] ff_2.2-10 foreach_1.4.0 GenomicRanges_1.10.6 IRanges_1.16.4 iterators_1.0.6 parallel_2.15.2 [13] preprocessCore_1.20.0 splines_2.15.2 stats4_2.15.2 tools_2.15.2 zlibbioc_1.4.0 Thank you very much J Toledo UPenn USA [[alternative HTML version deleted]]
affy limma oligo affy limma oligo • 1.3k views
ADD COMMENT
0
Entering edit mode
@james-w-macdonald-5106
Last seen 1 day ago
United States
Hi Jon, On 2/11/2013 7:40 PM, Jon Toledo wrote: > > > > Dear Bioconductor List, > > > I have repeated my workflow using the affy and oligo package alternatively followed by the limma package to analyze and experiment with two conditions using Mouse Gene 1.0-ST chips and I arrive to different results. > > I have been looking online and found that at least for the for the Mouse Gene 1.1-ST the oligo package is preferred, but not anything clear for Mouse Gene 1.0-ST . > > I attach below my code and session info: > > A) For running affy: > > library(affy) > library(pd.mogene.1.0.st.v1) > library(mogene10sttranscriptcluster.db) > > cellist=list.celfiles(full.names=T) > cellistD14=grep("CD1...14",cellist,value=T) > esetD14<- justRMA(filenames=gsub("\./","",cellistD14)) > > B) For runnign oligo: > > library(oligo) > library(pd.mogene.1.0.st.v1) > library(mogene10sttranscriptcluster.db) > > cellist=list.celfiles(full.names=T) > cellistD14=grep("CD1...14",cellist,value=T) > > rsetD14=read.celfiles(cellistD14) > esetpD14=rma(rsetD14,target="probeset") > esetD14=rma(rsetD14,target="core") > > > C) Finally running the same analysis: > > designD14<-read.delim('designD14.txt') > contrast.matrix=model.matrix(~treatment,data=designD14) > library(limma) > fit<- lmFit(esetD14, contrast.matrix) > fit<- eBayes(fit,proportion=0.01) > > m1=topTable(fit, coef="treatment",number=1e8,adjust.method="BH") > m1=m1[,c("ID","logFC","P.Value","adj.P.Val")] > m1=cbind(m1[,1:2],FCTreat=2**m1[,2],PTreat=m1[,3],adj.PTreat=m1[,4]) You show a lot of code, but paradoxically for all that code I am left wondering what you did, and how things differed. Anyway, either oligo or xps are the only packages that were designed for these arrays. The affy package was 'fixed' so it will work, but IMO you should be using oligo or xps, not affy. There are differences between the results for oligo and affy: > library(oligo) > oligo <- rma(read.celfiles(list.celfiles())) > library(affy) > affy <- justRMA() > oligo ExpressionSet (storageMode: lockedEnvironment) assayData: 35556 features, 16 samples element names: exprs protocolData rowNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... RH_8867.8_pid1257.CEL (16 total) varLabels: exprs dates varMetadata: labelDescription channel phenoData rowNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... RH_8867.8_pid1257.CEL (16 total) varLabels: index varMetadata: labelDescription channel featureData: none experimentData: use 'experimentData(object)' Annotation: pd.mogene.1.0.st.v1 > affy ExpressionSet (storageMode: lockedEnvironment) assayData: 34760 features, 16 samples element names: exprs, se.exprs protocolData sampleNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... RH_8867.8_pid1257.CEL (16 total) varLabels: ScanDate varMetadata: labelDescription phenoData sampleNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... RH_8867.8_pid1257.CEL (16 total) varLabels: sample varMetadata: labelDescription featureData: none experimentData: use 'experimentData(object)' Annotation: mogene10stv1 Note that oligo returns 35556 probesets, where affy returns 34760. If we subset to overlapping probesets, we still get some differences: > oligo <- exprs(oligo)[featureNames(oligo) %in% featureNames(affy),] > affy <- exprs(affy)[featureNames(affy) %in% row.names(oligo),] > all.equal(row.names(oligo), row.names(affy)) [1] TRUE > all.equal(affy, oligo) [1] "Mean relative difference: 0.01049026" And if I look at a summary of these differences, most are very small (the IQR goes from 0.005 - 0.04 or so), with large differences at the extremes (-5, 10). This may be due to differences in the probesets; note that the affy package uses an old unsupported CDF file, whereas the oligo package uses the current pgf/clf files. Best, Jim > >> sessionInfo() (This is for the affy run) > R version 2.15.2 (2012-10-26) > Platform: x86_64-w64-mingw32/x64 (64-bit) > > locale: > [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252 > [4] LC_NUMERIC=C LC_TIME=English_United States.1252 > > attached base packages: > [1] stats graphics grDevices utils datasets methods base > > other attached packages: > [1] mogene10stv1cdf_2.11.0 limma_3.14.4 mogene10sttranscriptcluster.db_8.0.1 > [4] org.Mm.eg.db_2.8.0 AnnotationDbi_1.20.3 pd.mogene.1.0.st.v1_3.8.0 > [7] oligo_1.22.0 oligoClasses_1.20.0 RSQLite_0.11.2 > [10] DBI_0.2-5 affy_1.36.1 Biobase_2.18.0 > [13] BiocGenerics_0.4.0 > > loaded via a namespace (and not attached): > [1] affxparser_1.30.2 affyio_1.26.0 BiocInstaller_1.8.3 Biostrings_2.26.3 bit_1.1-9 codetools_0.2-8 > [7] ff_2.2-10 foreach_1.4.0 GenomicRanges_1.10.6 IRanges_1.16.4 iterators_1.0.6 parallel_2.15.2 > [13] preprocessCore_1.20.0 splines_2.15.2 stats4_2.15.2 tools_2.15.2 zlibbioc_1.4.0 > > Thank you very much > > > J Toledo > UPenn > USA > > > [[alternative HTML version deleted]] > > _______________________________________________ > Bioconductor mailing list > Bioconductor at r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor -- James W. MacDonald, M.S. Biostatistician University of Washington Environmental and Occupational Health Sciences 4225 Roosevelt Way NE, # 100 Seattle WA 98105-6099
ADD COMMENT
0
Entering edit mode
Thank you James is is exactly what I needed. Was comparing two groups and when I got back to the project some weeks later changed the package and got different results which left me a bit puzzled. > Date: Tue, 12 Feb 2013 09:25:11 -0500 > From: jmacdon@uw.edu > To: tintin_jb@hotmail.com > CC: bioconductor@r-project.org > Subject: Re: [BioC] Differences in results analyzing Mouse Gene 1.0-ST using oligo and affy package > > Hi Jon, > > On 2/11/2013 7:40 PM, Jon Toledo wrote: > > > > > > > > Dear Bioconductor List, > > > > > > I have repeated my workflow using the affy and oligo package alternatively followed by the limma package to analyze and experiment with two conditions using Mouse Gene 1.0-ST chips and I arrive to different results. > > > > I have been looking online and found that at least for the for the Mouse Gene 1.1-ST the oligo package is preferred, but not anything clear for Mouse Gene 1.0-ST . > > > > I attach below my code and session info: > > > > A) For running affy: > > > > library(affy) > > library(pd.mogene.1.0.st.v1) > > library(mogene10sttranscriptcluster.db) > > > > cellist=list.celfiles(full.names=T) > > cellistD14=grep("CD1...14",cellist,value=T) > > esetD14<- justRMA(filenames=gsub("\./","",cellistD14)) > > > > B) For runnign oligo: > > > > library(oligo) > > library(pd.mogene.1.0.st.v1) > > library(mogene10sttranscriptcluster.db) > > > > cellist=list.celfiles(full.names=T) > > cellistD14=grep("CD1...14",cellist,value=T) > > > > rsetD14=read.celfiles(cellistD14) > > esetpD14=rma(rsetD14,target="probeset") > > esetD14=rma(rsetD14,target="core") > > > > > > C) Finally running the same analysis: > > > > designD14<-read.delim('designD14.txt') > > contrast.matrix=model.matrix(~treatment,data=designD14) > > library(limma) > > fit<- lmFit(esetD14, contrast.matrix) > > fit<- eBayes(fit,proportion=0.01) > > > > m1=topTable(fit, coef="treatment",number=1e8,adjust.method="BH") > > m1=m1[,c("ID","logFC","P.Value","adj.P.Val")] > > m1=cbind(m1[,1:2],FCTreat=2**m1[,2],PTreat=m1[,3],adj.PTreat=m1[,4]) > > You show a lot of code, but paradoxically for all that code I am left > wondering what you did, and how things differed. > > Anyway, either oligo or xps are the only packages that were designed for > these arrays. The affy package was 'fixed' so it will work, but IMO you > should be using oligo or xps, not affy. There are differences between > the results for oligo and affy: > > > library(oligo) > > oligo <- rma(read.celfiles(list.celfiles())) > > library(affy) > > affy <- justRMA() > > oligo > ExpressionSet (storageMode: lockedEnvironment) > assayData: 35556 features, 16 samples > element names: exprs > protocolData > rowNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... > RH_8867.8_pid1257.CEL (16 total) > varLabels: exprs dates > varMetadata: labelDescription channel > phenoData > rowNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... > RH_8867.8_pid1257.CEL (16 total) > varLabels: index > varMetadata: labelDescription channel > featureData: none > experimentData: use 'experimentData(object)' > Annotation: pd.mogene.1.0.st.v1 > > affy > ExpressionSet (storageMode: lockedEnvironment) > assayData: 34760 features, 16 samples > element names: exprs, se.exprs > protocolData > sampleNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... > RH_8867.8_pid1257.CEL (16 total) > varLabels: ScanDate > varMetadata: labelDescription > phenoData > sampleNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... > RH_8867.8_pid1257.CEL (16 total) > varLabels: sample > varMetadata: labelDescription > featureData: none > experimentData: use 'experimentData(object)' > Annotation: mogene10stv1 > > Note that oligo returns 35556 probesets, where affy returns 34760. If we > subset to overlapping probesets, we still get some differences: > > > oligo <- exprs(oligo)[featureNames(oligo) %in% featureNames(affy),] > > affy <- exprs(affy)[featureNames(affy) %in% row.names(oligo),] > > all.equal(row.names(oligo), row.names(affy)) > [1] TRUE > > all.equal(affy, oligo) > [1] "Mean relative difference: 0.01049026" > > And if I look at a summary of these differences, most are very small > (the IQR goes from 0.005 - 0.04 or so), with large differences at the > extremes (-5, 10). This may be due to differences in the probesets; note > that the affy package uses an old unsupported CDF file, whereas the > oligo package uses the current pgf/clf files. > > Best, > > Jim > > > > > > > >> sessionInfo() (This is for the affy run) > > R version 2.15.2 (2012-10-26) > > Platform: x86_64-w64-mingw32/x64 (64-bit) > > > > locale: > > [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252 > > [4] LC_NUMERIC=C LC_TIME=English_United States.1252 > > > > attached base packages: > > [1] stats graphics grDevices utils datasets methods base > > > > other attached packages: > > [1] mogene10stv1cdf_2.11.0 limma_3.14.4 mogene10sttranscriptcluster.db_8.0.1 > > [4] org.Mm.eg.db_2.8.0 AnnotationDbi_1.20.3 pd.mogene.1.0.st.v1_3.8.0 > > [7] oligo_1.22.0 oligoClasses_1.20.0 RSQLite_0.11.2 > > [10] DBI_0.2-5 affy_1.36.1 Biobase_2.18.0 > > [13] BiocGenerics_0.4.0 > > > > loaded via a namespace (and not attached): > > [1] affxparser_1.30.2 affyio_1.26.0 BiocInstaller_1.8.3 Biostrings_2.26.3 bit_1.1-9 codetools_0.2-8 > > [7] ff_2.2-10 foreach_1.4.0 GenomicRanges_1.10.6 IRanges_1.16.4 iterators_1.0.6 parallel_2.15.2 > > [13] preprocessCore_1.20.0 splines_2.15.2 stats4_2.15.2 tools_2.15.2 zlibbioc_1.4.0 > > > > Thank you very much > > > > > > J Toledo > > UPenn > > USA > > > > > > [[alternative HTML version deleted]] > > > > _______________________________________________ > > Bioconductor mailing list > > Bioconductor@r-project.org > > https://stat.ethz.ch/mailman/listinfo/bioconductor > > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor > > -- > James W. MacDonald, M.S. > Biostatistician > University of Washington > Environmental and Occupational Health Sciences > 4225 Roosevelt Way NE, # 100 > Seattle WA 98105-6099 > [[alternative HTML version deleted]]
ADD REPLY
0
Entering edit mode
A little more information for those who might care. There are 139 probesets that differ by > |5| between the oligo and affy package. If I choose one of them to see what probes make up the probeset, I get this: > get("10345698", mogene10stv1cdf) pm mm [1,] 268111 NA [2,] 468001 NA [3,] 977212 NA [4,] 1027059 NA [5,] 425711 NA [6,] 248417 NA So the affy package thinks there are 6 probes in this probeset. > con <- db(pd.mogene.1.0.st.v1) > dbGetQuery(con, "select meta_fsetid, x, y from pmfeature inner join core_mps on pmfeature.fsetid=core_mps.fsetid where core_mps.meta_fsetid='10345698';") meta_fsetid x y 1 10345698 150 679 2 10345698 161 505 3 10345698 550 517 4 10345698 23 469 5 10345698 28 775 6 10345698 16 6 7 10345698 256 1035 8 10345698 985 592 9 10345698 916 421 10 10345698 988 754 11 10345698 1028 174 12 10345698 1016 146 13 10345698 592 430 14 10345698 862 584 15 10345698 84 304 16 10345698 845 397 17 10345698 264 798 18 10345698 149 357 19 10345698 332 843 20 10345698 362 215 21 10345698 366 722 22 10345698 339 835 23 10345698 173 898 24 10345698 95 495 25 10345698 101 9 26 10345698 1015 309 27 10345698 933 427 28 10345698 239 1010 29 10345698 135 867 30 10345698 72 838 31 10345698 63 199 32 10345698 412 592 33 10345698 388 339 34 10345698 829 211 35 10345698 110 765 36 10345698 312 386 37 10345698 10 827 38 10345698 165 727 39 10345698 90 234 40 10345698 847 19 41 10345698 28 493 42 10345698 801 246 43 10345698 790 535 44 10345698 577 1002 45 10345698 394 829 46 10345698 258 190 47 10345698 928 762 48 10345698 133 190 49 10345698 712 357 50 10345698 680 24 51 10345698 375 968 52 10345698 482 893 53 10345698 393 521 54 10345698 308 117 55 10345698 360 255 56 10345698 750 445 57 10345698 711 930 58 10345698 158 978 59 10345698 460 405 60 10345698 616 236 And the oligo package says there are 60. And if you look at netaffx, it says that they have combined 5 exon probesets to create this transcript probeset, for a total of 60 probes. So it looks like oligo is current, and the cdf package for affy (which is based on an unsupported cdf that Affymetrix is obviously not supporting) is not. Best, Jim On 2/12/2013 10:03 AM, Jon Toledo wrote: > Thank you James is is exactly what I needed. > > Was comparing two groups and when I got back to the project some weeks > later changed the package and got different results which left me a > bit puzzled. > > > Date: Tue, 12 Feb 2013 09:25:11 -0500 > > From: jmacdon at uw.edu > > To: tintin_jb at hotmail.com > > CC: bioconductor at r-project.org > > Subject: Re: [BioC] Differences in results analyzing Mouse Gene > 1.0-ST using oligo and affy package > > > > Hi Jon, > > > > On 2/11/2013 7:40 PM, Jon Toledo wrote: > > > > > > > > > > > > Dear Bioconductor List, > > > > > > > > > I have repeated my workflow using the affy and oligo package > alternatively followed by the limma package to analyze and experiment > with two conditions using Mouse Gene 1.0-ST chips and I arrive to > different results. > > > > > > I have been looking online and found that at least for the for the > Mouse Gene 1.1-ST the oligo package is preferred, but not anything > clear for Mouse Gene 1.0-ST . > > > > > > I attach below my code and session info: > > > > > > A) For running affy: > > > > > > library(affy) > > > library(pd.mogene.1.0.st.v1) > > > library(mogene10sttranscriptcluster.db) > > > > > > cellist=list.celfiles(full.names=T) > > > cellistD14=grep("CD1...14",cellist,value=T) > > > esetD14<- justRMA(filenames=gsub("\./","",cellistD14)) > > > > > > B) For runnign oligo: > > > > > > library(oligo) > > > library(pd.mogene.1.0.st.v1) > > > library(mogene10sttranscriptcluster.db) > > > > > > cellist=list.celfiles(full.names=T) > > > cellistD14=grep("CD1...14",cellist,value=T) > > > > > > rsetD14=read.celfiles(cellistD14) > > > esetpD14=rma(rsetD14,target="probeset") > > > esetD14=rma(rsetD14,target="core") > > > > > > > > > C) Finally running the same analysis: > > > > > > designD14<-read.delim('designD14.txt') > > > contrast.matrix=model.matrix(~treatment,data=designD14) > > > library(limma) > > > fit<- lmFit(esetD14, contrast.matrix) > > > fit<- eBayes(fit,proportion=0.01) > > > > > > m1=topTable(fit, coef="treatment",number=1e8,adjust.method="BH") > > > m1=m1[,c("ID","logFC","P.Value","adj.P.Val")] > > > m1=cbind(m1[,1:2],FCTreat=2**m1[,2],PTreat=m1[,3],adj.PTreat=m1[,4]) > > > > You show a lot of code, but paradoxically for all that code I am left > > wondering what you did, and how things differed. > > > > Anyway, either oligo or xps are the only packages that were designed > for > > these arrays. The affy package was 'fixed' so it will work, but IMO you > > should be using oligo or xps, not affy. There are differences between > > the results for oligo and affy: > > > > > library(oligo) > > > oligo <- rma(read.celfiles(list.celfiles())) > > > library(affy) > > > affy <- justRMA() > > > oligo > > ExpressionSet (storageMode: lockedEnvironment) > > assayData: 35556 features, 16 samples > > element names: exprs > > protocolData > > rowNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... > > RH_8867.8_pid1257.CEL (16 total) > > varLabels: exprs dates > > varMetadata: labelDescription channel > > phenoData > > rowNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... > > RH_8867.8_pid1257.CEL (16 total) > > varLabels: index > > varMetadata: labelDescription channel > > featureData: none > > experimentData: use 'experimentData(object)' > > Annotation: pd.mogene.1.0.st.v1 > > > affy > > ExpressionSet (storageMode: lockedEnvironment) > > assayData: 34760 features, 16 samples > > element names: exprs, se.exprs > > protocolData > > sampleNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... > > RH_8867.8_pid1257.CEL (16 total) > > varLabels: ScanDate > > varMetadata: labelDescription > > phenoData > > sampleNames: RH_8500.1_pid1257.CEL RH_8500.4_pid1257.CEL ... > > RH_8867.8_pid1257.CEL (16 total) > > varLabels: sample > > varMetadata: labelDescription > > featureData: none > > experimentData: use 'experimentData(object)' > > Annotation: mogene10stv1 > > > > Note that oligo returns 35556 probesets, where affy returns 34760. > If we > > subset to overlapping probesets, we still get some differences: > > > > > oligo <- exprs(oligo)[featureNames(oligo) %in% featureNames(affy),] > > > affy <- exprs(affy)[featureNames(affy) %in% row.names(oligo),] > > > all.equal(row.names(oligo), row.names(affy)) > > [1] TRUE > > > all.equal(affy, oligo) > > [1] "Mean relative difference: 0.01049026" > > > > And if I look at a summary of these differences, most are very small > > (the IQR goes from 0.005 - 0.04 or so), with large differences at the > > extremes (-5, 10). This may be due to differences in the probesets; > note > > that the affy package uses an old unsupported CDF file, whereas the > > oligo package uses the current pgf/clf files. > > > > Best, > > > > Jim > > > > > > > > > > > > > >> sessionInfo() (This is for the affy run) > > > R version 2.15.2 (2012-10-26) > > > Platform: x86_64-w64-mingw32/x64 (64-bit) > > > > > > locale: > > > [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United > States.1252 LC_MONETARY=English_United States.1252 > > > [4] LC_NUMERIC=C LC_TIME=English_United States.1252 > > > > > > attached base packages: > > > [1] stats graphics grDevices utils datasets methods base > > > > > > other attached packages: > > > [1] mogene10stv1cdf_2.11.0 limma_3.14.4 > mogene10sttranscriptcluster.db_8.0.1 > > > [4] org.Mm.eg.db_2.8.0 AnnotationDbi_1.20.3 pd.mogene.1.0.st.v1_3.8.0 > > > [7] oligo_1.22.0 oligoClasses_1.20.0 RSQLite_0.11.2 > > > [10] DBI_0.2-5 affy_1.36.1 Biobase_2.18.0 > > > [13] BiocGenerics_0.4.0 > > > > > > loaded via a namespace (and not attached): > > > [1] affxparser_1.30.2 affyio_1.26.0 BiocInstaller_1.8.3 > Biostrings_2.26.3 bit_1.1-9 codetools_0.2-8 > > > [7] ff_2.2-10 foreach_1.4.0 GenomicRanges_1.10.6 IRanges_1.16.4 > iterators_1.0.6 parallel_2.15.2 > > > [13] preprocessCore_1.20.0 splines_2.15.2 stats4_2.15.2 > tools_2.15.2 zlibbioc_1.4.0 > > > > > > Thank you very much > > > > > > > > > J Toledo > > > UPenn > > > USA > > > > > > > > > [[alternative HTML version deleted]] > > > > > > _______________________________________________ > > > Bioconductor mailing list > > > Bioconductor at r-project.org > > > https://stat.ethz.ch/mailman/listinfo/bioconductor > > > Search the archives: > http://news.gmane.org/gmane.science.biology.informatics.conductor > > > > -- > > James W. MacDonald, M.S. > > Biostatistician > > University of Washington > > Environmental and Occupational Health Sciences > > 4225 Roosevelt Way NE, # 100 > > Seattle WA 98105-6099 > > -- James W. MacDonald, M.S. Biostatistician University of Washington Environmental and Occupational Health Sciences 4225 Roosevelt Way NE, # 100 Seattle WA 98105-6099
ADD REPLY

Login before adding your answer.

Traffic: 440 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6