filtering Gene 1.0 ST chips
1
0
Entering edit mode
@dennis-burian-5771
Last seen 10.3 years ago
I have a large time course experiment on Gene 1.0 ST GeneChips that I'm analyzing with the oligo and timecourse packages in Bioconductor. In my experimental design, this analysis method determines genes most likely to have different temporal expression patterns between two biological conditions. Where I'm running into trouble is many of my highest scoring genes are intronic and exonic controls. I surmise that the software is scoring these probe sets highly because they are "expressed" at very low but noisy levels. Examination of the expression profiles confirms this hypothesis, expression levels between 0 and 4 so I'm not concerned about quality of the data. >From the oligo.pdf manual in rma-methods, core is the default setting for target. My question is whether there is another setting for target that would filter out the intronic/exonic control probe sets prior to differential expression testing? Is subset implemented and if so what flag would I use to take advantage of it? > sessionInfo() R version 2.15.0 (2012-03-30) Platform: x86_64-redhat-linux-gnu (64-bit) locale: [1] LC_CTYPE=en_US.utf8 LC_NUMERIC=C [3] LC_TIME=en_US.utf8 LC_COLLATE=en_US.utf8 [5] LC_MONETARY=en_US.utf8 LC_MESSAGES=en_US.utf8 [7] LC_PAPER=C LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.utf8 LC_IDENTIFICATION=C attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] pd.hugene.1.0.st.v1_3.6.0 RSQLite_0.11.2 [3] DBI_0.2-5 timecourse_1.28.0 [5] MASS_7.3-22 oligo_1.20.4 [7] oligoClasses_1.18.0 loaded via a namespace (and not attached): [1] affxparser_1.28.1 affyio_1.24.0 Biobase_2.16.0 [4] BiocGenerics_0.2.0 BiocInstaller_1.4.9 Biostrings_2.24.1 [7] bit_1.1-9 codetools_0.2-8 compiler_2.15.0 [10] ff_2.2-10 foreach_1.4.0 IRanges_1.14.4 [13] iterators_1.0.6 limma_3.12.3 marray_1.34.0 [16] preprocessCore_1.18.0 splines_2.15.0 stats4_2.15.0 [19] tools_2.15.0 zlibbioc_1.2.0 > Many thanks, Dennis Burian
TimeCourse probe timecourse oligo TimeCourse probe timecourse oligo • 1.8k views
ADD COMMENT
0
Entering edit mode
Mark Cowley ▴ 910
@mark-cowley-2951
Last seen 10.3 years ago
Hi Dennis, Here's some code for doing control probe filtering from one of my pipelines cheers, Mark ######################################################### #' Determine the type of each probeset, using data from a Probe Design Info package (eg pd.hugene.1.0.st.v1). #' #' Each probeset is one of the following types: \cr #' - main\cr #' - normgene->intron\cr #' - normgene->exon\cr #' - rescue->FLmRNA->unmapped\cr #' - control->affx\cr #' - control->bgp->antigenomic\cr #' - low-coverage\cr #' \cr #' Probeset levels\cr #' Gene ST arrays only have core, or exon-level probesets (ie \code{level='probeset'}). #' Exon ST arrays have 3 levels of transcript-level probe qualities: core, extended, full, #' in addition to exon-level probesets. #' \cr #' Missing probes\cr #' Sometimes there are probesets on the array (ie in the CEL files, and in the pgf/clf) #' which are not in the pd Info Package. #' This is true for at least the MoGene 1.0 ST array. If you provide a vector #' of all probeset ID's, then those that are not in the pd info package will be labelled #' 'low-coverage' probesets.\cr #' see here for more info:\cr #' \url{http://thread.gmane.org/gmane.science.biology.informatics.cond uctor/19591} #' AFAIK, HuGene array does not suffer from this, not sure about RaGene. #' Probe types\cr #' #' @param pd.package The name, or the actual object of a \code{AffyGenePDInfo}, or #' \code{AffyExonPDInfo} environment; see examples. #' @param probesets an optional vector of all probesets of interest. See details. #' @param level Which probeset level are you interested in? One of core, extended, full or probeset, #' where the first 3 correspond to transcript-level probesets, and 4th = exon-level probesets. #' #' @return a \code{data.frame} with 2 columns: \dQuote{probeset_id} and \dQuote{type}, where type is one of #' the values mentioned in details. #' @author Mark Cowley, 2010-02-03 #' @examples #' \dontrun{ #' #' ## transcript-level analysis on Gene ST arrays #' a <- pd.package.probeset2type("pd.hugene.1.0.st.v1") #' a <- pd.package.probeset2type( get("pd.hugene.1.0.st.v1") ) #' sum(a$type =="main") #' # [1] 28869 #' # this is illegal on Gene ST arrays #' a <- pd.package.probeset2type("pd.hugene.1.0.st.v1", level="extended") #' a <- pd.package.probeset2type("pd.hugene.1.0.st.v1", level="full") #' #' ## exon-level analysis of GeneST arrays #' a <- pd.package.probeset2type("pd.hugene.1.0.st.v1", level="probeset") #' sum(a$type =="main") #' # [1] 253002 #' #' ## transcript-level analysis on Exon ST arrays #' a <- pd.package.probeset2type("pd.huex.1.0.st.v2", level="core") #' sum(a$type =="main") #' # [1] 17859 #' a <- pd.package.probeset2type("pd.huex.1.0.st.v2", level="extended") #' sum(a$type =="main") #' # [1] 129532 #' a <- pd.package.probeset2type("pd.huex.1.0.st.v2", level="full") #' sum(a$type =="main") #' # [1] 262266 #' #' ## exon-level analysis of Exon ST arrays #' a <- pd.package.probeset2type("pd.huex.1.0.st.v2", level="probeset") #' sum(a$type =="main") #' # [1] 1407090 #' #' } pd.package.probeset2type <- function(pd.package, probesets=NULL, level=c("core", "extended", "full", "probeset")[1]) { !missing(pd.package) || stop("pd.package must be supplied") if ( class(pd.package)[1] == "character" ) { require(pd.package, character.only=TRUE) || stop("Can't load the pd.package") pd.package <- get(pd.package) } if( ! class(pd.package)[1] %in% c("AffyGenePDInfo", "AffyExonPDInfo") ) stop("Unsupported argument. It should be a AffyGenePDInfo, or AffyExonPDInfo object, eg pd.hugene.1.0.st.v1, or pd.huex.1.0.st.v2.\n") if( class(pd.package)[1] == "AffyGenePDInfo" && level %in% c("extended", "full") ) stop("Unsupported probesets argument. Can't choose core or extended for an AffyGenePDInfo package\n") conn <- db(pd.package) # conn <- db(pd.hugene.1.0.st.v1) probe2type <- switch(level, core=dbGetQuery(conn, paste("SELECT DISTINCT meta_fsetid AS probeset_id, type_id AS type", "FROM featureSet, core_mps, type_dict", "WHERE featureSet.fsetid=core_mps.fsetid", "AND featureSet.type=type_dict.type")), extended=dbGetQuery(conn, paste("SELECT DISTINCT meta_fsetid AS probeset_id, type_id AS type", "FROM featureSet, extended_mps, type_dict", "WHERE featureSet.fsetid=extended_mps.fsetid", "AND featureSet.type=type_dict.type")), full=dbGetQuery(conn, paste("SELECT DISTINCT meta_fsetid AS probeset_id, type_id AS type", "FROM featureSet, full_mps, type_dict", "WHERE featureSet.fsetid=full_mps.fsetid", "AND featureSet.type=type_dict.type")), probeset= dbGetQuery(conn, paste("SELECT DISTINCT fsetid AS probeset_id, type_id AS type", "FROM featureSet, type_dict", "WHERE featureSet.type=type_dict.type")) ) ## there are sometimes probes that are not in the pd info package (eg the Mogene array has 38 'low-coverage-probes'.) ## see: http://thread.gmane.org/gmane.science.biology.informat ics.conductor/19591/ lowcoverage.probes <- setdiff(probesets, probe2type[,1]) # works even if probesets==NULL if( length(lowcoverage.probes) > 0 ) { tmp <- data.frame(probeset_id=lowcoverage.probes, type ="low-coverage") nrow(tmp) # [1] 38 probe2type <- rbind(probe2type, tmp) } if( !is.null(probesets) ) { probe2type <- probe2type[match(probesets, probe2type$probeset_id), ] } else { probe2type <- probe2type[order(probe2type[,1]), ] # head(probe2type) # # probeset_id type # # 1 10338001 control->affx # # 2 10338002 control->bgp->antigenomic # # 3 10338003 control->affx # # 4 10338004 control->affx # # 5 10338005 control->bgp->antigenomic # # 6 10338006 control->bgp->antigenomic } return( probe2type ) } ###################################################################### ########## library(oligo) probesets <- "core" controls <- c("exclude", "include")[1] cel.files <- list.celfiles(getwd()) chiptypes <- sapply(cel.files, function(x) oligo:::getCelChipType(x, useAffyio=TRUE)) pd.pkg.name <- cleanPlatformName(chiptypes[1]) # oligo function ExprFeatSet <- read.celfiles(filenames=cel.files, verbose=FALSE, checkType=FALSE) xdata <- rma(ExprFeatSet, target=probesets) ########################################## # Classify probesets by their control type. # This works for meta-probesets, and exon-level probesets. # probe2type <- pd.package.probeset2typepd.pkg.name, probesets=featureNames(xdata), level=probesets) counts <- sort(table(probe2type$type), decreasing=TRUE) counts <- data.frame(category=sprintf("%26s", names(counts)), Freq=counts, stringsAsFactors=FALSE) rownames(counts) <- NULL cat("Breakdown of number of probesets vs category:\n") print(counts) cat("\n") # main 28869 # normgene->intron 2904 # normgene->exon 1195 # rescue->FLmRNA->unmapped 227 # control->affx 57 # control->bgp->antigenomic 45 ########################################## ########################################## # throw away the control probes?? # ... and low-coverage probes? (http://thread.gmane.org/gmane. science.biology.informatics.conductor/19591/) # if( controls == "exclude" ) { cat(sprintf("Excluding %d control probesets, leaving %d probesets.\n\n", sum(probe2type$type != "main"), sum(probe2type$type == "main"))) probe.ids <- as.character(probe2type$probeset_id[probe2type$type == "main"]) probe.ids <- featureNames(xdata) %in% probe.ids xdata <- subset(xdata, probe.ids) } ########################################## On 16/02/2013, at 8:16 AM, Dennis Burian <dburian at="" cox.net=""> wrote: > I have a large time course experiment on Gene 1.0 ST GeneChips that I'm > analyzing with the oligo and timecourse packages in Bioconductor. In my > experimental design, this analysis method determines genes most likely > to have different temporal expression patterns between two biological > conditions. > > Where I'm running into trouble is many of my highest scoring genes are > intronic and exonic controls. I surmise that the software is scoring > these probe sets highly because they are "expressed" at very low but > noisy levels. Examination of the expression profiles confirms this > hypothesis, expression levels between 0 and 4 so I'm not concerned about > quality of the data. > >> From the oligo.pdf manual in rma-methods, core is the default setting > for target. My question is whether there is another setting for target > that would filter out the intronic/exonic control probe sets prior to > differential expression testing? Is subset implemented and if so what > flag would I use to take advantage of it? > >> sessionInfo() > R version 2.15.0 (2012-03-30) > Platform: x86_64-redhat-linux-gnu (64-bit) > > locale: > [1] LC_CTYPE=en_US.utf8 LC_NUMERIC=C > [3] LC_TIME=en_US.utf8 LC_COLLATE=en_US.utf8 > [5] LC_MONETARY=en_US.utf8 LC_MESSAGES=en_US.utf8 > [7] LC_PAPER=C LC_NAME=C > [9] LC_ADDRESS=C LC_TELEPHONE=C > [11] LC_MEASUREMENT=en_US.utf8 LC_IDENTIFICATION=C > > attached base packages: > [1] stats graphics grDevices utils datasets methods > base > > other attached packages: > [1] pd.hugene.1.0.st.v1_3.6.0 RSQLite_0.11.2 > [3] DBI_0.2-5 timecourse_1.28.0 > [5] MASS_7.3-22 oligo_1.20.4 > [7] oligoClasses_1.18.0 > > loaded via a namespace (and not attached): > [1] affxparser_1.28.1 affyio_1.24.0 Biobase_2.16.0 > [4] BiocGenerics_0.2.0 BiocInstaller_1.4.9 Biostrings_2.24.1 > [7] bit_1.1-9 codetools_0.2-8 compiler_2.15.0 > [10] ff_2.2-10 foreach_1.4.0 IRanges_1.14.4 > [13] iterators_1.0.6 limma_3.12.3 marray_1.34.0 > [16] preprocessCore_1.18.0 splines_2.15.0 stats4_2.15.0 > [19] tools_2.15.0 zlibbioc_1.2.0 >> > > Many thanks, > Dennis Burian > > _______________________________________________ > Bioconductor mailing list > Bioconductor at r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
ADD COMMENT

Login before adding your answer.

Traffic: 567 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6