Entering edit mode
Guest User
★
13k
@guest-user-4897
Last seen 10.3 years ago
Dear Maintainer,
I have created my.qPCRBatch object read into R using the ReadqPCR
package:
> rownames(exprs(qPCRBatch))
[1] "actin_14d_TechReps.1" "actin_14d_TechReps.2"
"actin_1d_TechReps.1" "actin_1d_TechReps.2" "actin_3d_TechReps.1"
"actin_3d_TechReps.2"
[7] "actin_7d_TechReps.1" "actin_7d_TechReps.2"
"lox22_14d_TechReps.1" "lox22_14d_TechReps.2" "lox22_1d_TechReps.1"
"lox22_1d_TechReps.2"
[13] "lox22_3d_TechReps.1" "lox22_3d_TechReps.2"
"lox22_7d_TechReps.1" "lox22_7d_TechReps.2"
> combinedTechReps=combineTechReps(qPCRBatch)
> combinedTechReps
qPCRBatch (storageMode: lockedEnvironment)
assayData: 8 features, 2 samples
element names: exprs
protocolData: none
phenoData
sampleNames: MeJa Triton.X
varLabels: sample
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:
I have also generated the deltaCq values using:
> hkgs="actin_1d"
> qPCRBatch.norm=deltaCq(combinedTechReps, hkgs=hkgs, calc="arith")
> head(exprs(qPCRBatch.norm))
MeJa Triton.X
actin_14d 0.655 0.260
actin_1d 0.000 0.000
actin_3d -0.120 0.095
actin_7d 0.465 0.145
lox22_14d 2.755 3.530
lox22_1d 0.735 2.740
Now, to advance to Section 5.3, do I need to use qPCRBatch.norm. Or,
did R populate qPCRBatch object with this deltaCq data? In other
words, for Section 5.3, does the deltaDeltaCq function calculate
deltaDeltaCq using deltaCq obtained in 5.1, or does it calculate
deltaDeltaCq from the raw Cq data?
However, I get error message when advancing from Section 5.1 to 5.3
using qPCRBatch.norm:
> contM<-cbind(c(0,0,0,0,1,1,1,1), c(1,1,1,1,0,0,0,0))
> colnames(contM)=c("MeJa", "Triton.X")
> rownames(contM)=rownames(exprs(qPCRBatch.norm))
> contM
MeJa Triton.X
actin_14d 0 1
actin_1d 0 1
actin_3d 0 1
actin_7d 0 1
lox22_14d 1 0
lox22_1d 1 0
lox22_3d 1 0
lox22_7d 1 0
> hkgs<-"actin_1d"
> ddCq.norm=deltaDeltaCq(qPCRBatch.norm, maxNACase=0, maxNAControl=0,
hkgs=hkgs, contrastM=contM, case="MeJa", control="Triton.X",
statCalc="geom")
Error in .local(qPCRBatch, ...) : subscript out of bounds
I tried many attempts to alter the subscripts to no success. So, I
attempted to use the vignette to see how to work with the data.
However, I got the same result:
> head(exprs(qPCRBatch.norm))
fp1.day3.v fp2.day3.v fp5.day3.mia fp6.day3.mia
fp.3.day.3.v fp.4.day.3.v fp.7.day.3.mia fp.8.day.3.mia
Actb.Rn00667869_m1 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
Adipoq.Rn00595250_m1 0.016052 -0.116520 2.933523 2.540987
-0.178971 -0.563263 2.458509 2.736475
Adrbk1.Rn00562822_m1 NA NA 6.566628 6.642561
NA NA 3.737100 6.873568
Agtrl1.Rn00580252_s1 4.899380 5.035841 6.397364 5.680837
5.220796 4.425364 4.794776 5.345202
Alpl.Rn00564931_m1 12.531942 11.808657 13.035166 12.239549
12.394802 11.772896 12.110000 12.255186
B2m.Rn00560865_m1 0.741558 0.890717 2.040470 2.234605
0.505516 0.877598 1.927563 1.903269
> contM<-cbind(c(0,0,1,1,0,0,1,1), c(1,1,0,0,1,1,0,0))
> colnames(contM)<-c("interestingPhenotype", "wildTypePhenotype")
> rownames(contM)=sampleNames(qPCRBatch.taqman)
> contM
interestingPhenotype wildTypePhenotype
fp1.day3.v 0 1
fp2.day3.v 0 1
fp5.day3.mia 1 0
fp6.day3.mia 1 0
fp.3.day.3.v 0 1
fp.4.day.3.v 0 1
fp.7.day.3.mia 1 0
fp.8.day.3.mia 1 0
> hkg="Actb-Rn00667869_m1"
> ddCq.grr<-deltaDeltaCq(qPCRBatch.norm, hkgs=hkg, contrastM=contM,
case="interestingPhentype", control="wildTypePhenotype",
+ statCalc="arith")
Error in .local(qPCRBatch, ...) : subscript out of bounds
I also made attempts to change this subscript as well, e.g.
hkg<=>hkgs, removed hkgCalc since only using one hkg, but to no
success.
Also, I see for the qPCR.TechReps.txt.example there is a control gene
for each the case detector, respectively.
Unfortunately, you geNorm and NormFinder with example.taqman. However,
for the qPCRBatch.TechReps.example-type of datafile-, which detector
do you choose to normalize the data? In other words, how do you set up
your contrast matrix to match caseA vs. caseB vs. control?
I assume I could do this with the contrast matrix using
cbind(c(caseA), (caseB), (control)), but would NormqPCR::deltaDeltaCq
understand this language?
Lastly, how to deal with various timepoints:
I have 3 different biological collections:
1) 1.5, 2) 2, and 3) 3.5.
Two samples per collection (control, treated), and testing only 12
individual genes plus actin as control gene in each sample and
biological rep, which data for each gene has 4 (1day, 3day, 7day, and
14day) timepoints (in both control and treated samples as well as for
target and control genes).
Case Control
actin_14d 0 1
actin_1d 0 1
actin_3d 0 1
actin_7d 0 1
lox22_14d 1 0
lox22_1d 1 0
lox22_3d 1 0
lox22_7d 1 0
Right now, I'm only utilizing one data file(one sample): Biological
collection at 1.5. In this file I have both reference genes and the
respective target genes for each timepoint(as shown above). For
deltaDeltaCq function, do I need a second file to compare 1.5 with
(e.g. 2 and/or 3.5), because I'm currently using the featureNames()
and not the sampleNames()?
So, getting an error? This is not logical since I got same error with
the NormqPCR vignette.
Any suggestions is greatly appreciated.
Regards,
Franklin
-- output of sessionInfo():
> sessionInfo()
R version 2.15.1 (2012-06-22)
Platform: x86_64-pc-mingw32/x64 (64-bit)
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United
States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United
States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] NormqPCR_1.4.0 RColorBrewer_1.0-5 ReadqPCR_1.4.0
affy_1.36.1 Biobase_2.18.0 BiocGenerics_0.4.0
loaded via a namespace (and not attached):
[1] affyio_1.26.0 BiocInstaller_1.8.3 preprocessCore_1.20.0
zlibbioc_1.4.0
--
Sent via the guest posting facility at bioconductor.org.