edgeR asimmetry in miRNA experiment
0
0
Entering edit mode
@alessandroguffantigenomniacom-4436
Last seen 10.3 years ago
Dear colleagues: I am analyzing the result of some cancer samples miRNA NGS experiments with edgeR, with the following setup: R version 2.15.3 (2013-03-01) Platform: x86_64-w64-mingw32/x64 (64-bit) locale: [1] LC_COLLATE=Italian_Italy.1252 LC_CTYPE=Italian_Italy.1252 [3] LC_MONETARY=Italian_Italy.1252 LC_NUMERIC=C [5] LC_TIME=Italian_Italy.1252 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] edgeR_3.0.8 limma_3.14.4 I am following a rather standard workflow - please note that we have 8 samples and only 1 control > targets <- read.delim("targets.txt", stringsAsFactors = FALSE) > d <- readDGE(targets, header=FALSE) > colnames(d) <- c("ARMS1","ARMS2","ARMS3","ARMS4","ERMS1","ERMS2","ERMS3","ERMS4","NMS ") > dim(d) [1] 2038 9 >keep <- rowSums(cpm(d)> 5) >= 3 > dim(d) [1] 685 9 > d$samples$lib.size <- colSums(d$counts) > d<-calcNormFactors(d) > d <- estimateCommonDisp(d, verbose=TRUE) Disp = 0.71417 , BCV = 0.8451 > d <- estimateTagwiseDisp(d, trend="none",verbose=TRUE) Using interpolation to estimate tagwise dispersion. > de.com <- exactTest(d) > sumde.com$table$PValue < 0.05) [1] 97 > topValues <- topTagsde.com,n=97) > summary(decideTestsDGEde.com,p.value=0.05)) [,1] -1 44 0 641 1 0 What we noticed is that there is a strong asimmetry in the corrected P values, in that only the downregulated miRNAs have a significant corrected P value - the upregulated miRNAs are less when examing the uncorreetd counts, basically we have alf of the CPM Questions: => is the unbalanced experimental design affecting the results ? this unbalance is coherent with the literature, in cancers the majority of miRNAs are downregulated => if yes, can I correct it or we should just take the results as they are and validate extensively if we want to explore also the upregulated miRNAs ? Thanks a lot in advance for any help, Alessandro & colleagues ----------------------------------------------------- Alessandro Guffanti - Head, Bioinformatics Genomnia srl Via Nerviano, 31/B – 20020 Lainate (MI) Tel. +39-0293305.702 / Fax +39-0293305.777 www.genomnia.com [http://www.genomnia.com/] alessandro.guffanti@genomnia.com [mailto:alessandro.guffanti@genomnia.com] Per cortesia, prima di stampare questa e-mail pensate all'ambiente. Please consider the environment before printing this mail note. ----------------------------------------------------------- Il Contenuto del presente messaggio potrebbe contenere informazioni confidenziali a favore dei soli destinatari del messaggio stesso. Qualora riceviate per errore questo messaggio siete pregati di cancellarlo dalla memoria del computer e di contattare i numeri sopra indicati. Ogni utilizzo o ritrasmissione dei contenuti del messaggio da parte di soggetti diversi dai destinatari è da considerarsi vietato ed abusivo. The information transmitted is intended only for the per...{{dropped:10}}
Cancer edgeR Cancer edgeR • 975 views

Login before adding your answer.

Traffic: 613 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6