interaction effects for DEXSeq
2
0
Entering edit mode
@mallon-eamonn-b-dr-5947
Last seen 10.3 years ago
Dear all I have 11 samples for a cross infection experiment where there are two colonies (the hosts K or Q) and 2 strains (6 or 8). sample colony strain type K61 k six single-read K62 k six single-read K63 k six single-read K81 k eight single-read K82 k eight single-read K83 k eight single-read Q61 q six single-read Q62 q six single-read Q63 q six single-read Q81 q eight single-read Q82 q eight single-read I am most interested in finding exon usage differences related to the interaction of the colony and strain factors. Following the vignette I put the following code together formuladispersion<-count~sample+(colony:strain)+exon ecs<-estimateDispersions(ecs, formula=formuladispersion) ecs<-fitDispersionFunction(ecs) formula0<-count~sample+exon+(colony:strain) formula1<-count~sample+exon+(colony:strain)*I(exon==exonID) ecs<-testForDEU(ecs, formula0=formula0, formula1=formula1) Does this make sense? Thanks in advance Eamonn Dr Eamonn Mallon Lecturer in Evolutionary Biology Adrian 220 Biology Department University of Leicester http://www2.le.ac.uk/departments/biology/people/mallon [[alternative HTML version deleted]]
• 1.8k views
ADD COMMENT
0
Entering edit mode
@mallon-eamonn-b-dr-5947
Last seen 10.3 years ago
My initial question still stands, but I have also tried a simpler model by just looking at the effect of strain on one colony. So there are two levels to condition (strain = 6 or 8) It runs fine but I get > table(res1$padjust < 0.1) FALSE TRUE 65836 5987 This seems excessive And the warning (50 times) > DEXSeqHTML( ecs, FDR=0.1, ) There were 50 or more warnings (use warnings() to see the first 50) > warnings() Warning messages: 1: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite Any ideas what is happening Thanks in advance Eamonn Dr Eamonn Mallon Lecturer in Evolutionary Biology Adrian 220 Biology Department University of Leicester http://www2.le.ac.uk/departments/biology/people/mallon On 06/06/2013 15:22, "Mallon, Eamonn B. (Dr.)" <ebm3 at="" leicester.ac.uk=""> wrote: >Dear all >I have 11 samples for a cross infection experiment where there are two >colonies (the hosts K or Q) and 2 strains (6 or 8). > >sample colony strain type >K61 k six single-read >K62 k six single-read >K63 k six single-read >K81 k eight single-read >K82 k eight single-read >K83 k eight single-read >Q61 q six single-read >Q62 q six single-read >Q63 q six single-read >Q81 q eight single-read >Q82 q eight single-read > >I am most interested in finding exon usage differences related to the >interaction of the colony and strain factors. Following the vignette I >put the following code together > > >formuladispersion<-count~sample+(colony:strain)+exon >ecs<-estimateDispersions(ecs, formula=formuladispersion) >ecs<-fitDispersionFunction(ecs) > >formula0<-count~sample+exon+(colony:strain) >formula1<-count~sample+exon+(colony:strain)*I(exon==exonID) >ecs<-testForDEU(ecs, formula0=formula0, formula1=formula1) > >Does this make sense? > >Thanks in advance >Eamonn > >Dr Eamonn Mallon >Lecturer in Evolutionary Biology >Adrian 220 >Biology Department >University of Leicester > >http://www2.le.ac.uk/departments/biology/people/mallon > > > [[alternative HTML version deleted]] > >_______________________________________________ >Bioconductor mailing list >Bioconductor at r-project.org >https://stat.ethz.ch/mailman/listinfo/bioconductor >Search the archives: >http://news.gmane.org/gmane.science.biology.informatics.conductor
ADD COMMENT
0
Entering edit mode
Can any one help with the below? Dr Eamonn Mallon Lecturer in Evolutionary Biology Adrian 220 Biology Department University of Leicester http://www2.le.ac.uk/departments/biology/people/mallon On 07/06/2013 14:30, "Mallon, Eamonn B. (Dr.)" <ebm3 at="" mail.cfs.le.ac.uk=""> wrote: >My initial question still stands, but I have also tried a simpler model by >just looking at the effect of strain on one colony. > >So there are two levels to condition (strain = 6 or 8) > >It runs fine but I get >> table(res1$padjust < 0.1) > >FALSE TRUE >65836 5987 > > >This seems excessive > >And the warning (50 times) > >> DEXSeqHTML( ecs, FDR=0.1, ) >There were 50 or more warnings (use warnings() to see the first 50) >> warnings() >Warning messages: >1: In chol.default(XVX + lambda * I, pivot = TRUE) : > the matrix is either rank-deficient or indefinite > > > >Any ideas what is happening > >Thanks in advance > >Eamonn > >Dr Eamonn Mallon >Lecturer in Evolutionary Biology >Adrian 220 >Biology Department >University of Leicester > >http://www2.le.ac.uk/departments/biology/people/mallon > > > > > >On 06/06/2013 15:22, "Mallon, Eamonn B. (Dr.)" <ebm3 at="" leicester.ac.uk=""> >wrote: > >>Dear all >>I have 11 samples for a cross infection experiment where there are two >>colonies (the hosts K or Q) and 2 strains (6 or 8). >> >>sample colony strain type >>K61 k six single-read >>K62 k six single-read >>K63 k six single-read >>K81 k eight single-read >>K82 k eight single-read >>K83 k eight single-read >>Q61 q six single-read >>Q62 q six single-read >>Q63 q six single-read >>Q81 q eight single-read >>Q82 q eight single-read >> >>I am most interested in finding exon usage differences related to the >>interaction of the colony and strain factors. Following the vignette I >>put the following code together >> >> >>formuladispersion<-count~sample+(colony:strain)+exon >>ecs<-estimateDispersions(ecs, formula=formuladispersion) >>ecs<-fitDispersionFunction(ecs) >> >>formula0<-count~sample+exon+(colony:strain) >>formula1<-count~sample+exon+(colony:strain)*I(exon==exonID) >>ecs<-testForDEU(ecs, formula0=formula0, formula1=formula1) >> >>Does this make sense? >> >>Thanks in advance >>Eamonn >> >>Dr Eamonn Mallon >>Lecturer in Evolutionary Biology >>Adrian 220 >>Biology Department >>University of Leicester >> >>http://www2.le.ac.uk/departments/biology/people/mallon >> >> >> [[alternative HTML version deleted]] >> >>_______________________________________________ >>Bioconductor mailing list >>Bioconductor at r-project.org >>https://stat.ethz.ch/mailman/listinfo/bioconductor >>Search the archives: >>http://news.gmane.org/gmane.science.biology.informatics.conductor >
ADD REPLY
0
Entering edit mode
Simon Anders ★ 3.8k
@simon-anders-3855
Last seen 4.4 years ago
Zentrum für Molekularbiologie, Universi…
On 06/06/13 16:22, Mallon, Eamonn B. (Dr.) wrote: > Dear all > I have 11 samples for a cross infection experiment where there are two colonies (the hosts K or Q) and 2 strains (6 or 8). > > sample colony strain type > K61 k six single-read > K62 k six single-read > K63 k six single-read > K81 k eight single-read > K82 k eight single-read > K83 k eight single-read > Q61 q six single-read > Q62 q six single-read > Q63 q six single-read > Q81 q eight single-read > Q82 q eight single-read > > I am most interested in finding exon usage differences related to the interaction of the colony and strain factors. Following the vignette I put the following code together > > > formuladispersion<-count~sample+(colony:strain)+exon > ecs<-estimateDispersions(ecs, formula=formuladispersion) > ecs<-fitDispersionFunction(ecs) > > formula0<-count~sample+exon+(colony:strain) > formula1<-count~sample+exon+(colony:strain)*I(exon==exonID) > ecs<-testForDEU(ecs, formula0=formula0, formula1=formula1) > > Does this make sense? Not quite. This tests for main effects and interaction in one go, so it returns as hits all exons whose usage differs between colonies _and/or_ between strains. You are looking for interactions, i.e., for exons whose usage is different between strains _and_ where this difference itself differs between colonies. So, you need formuladispersion<-count~sample+(colony*strain)+exon formula0<-count~sample+exon+(colony+strain)*exon formula1<-count~sample+exon+(colony+strain)*exon+(colony:strain)*I(exo n==exonID) Things look a bit simpler if you use the new "TRT" functions: formuladispersion<-count~sample+(colony*strain)+exon formula0<-count~sample+exon+(colony+strain)*exon formula1<-count~sample+exon+(colony*strain)*exon Simon
ADD COMMENT
0
Entering edit mode
Dear Simon, Thanks I wouldn't have got that in a month of sundays. Unfortunately no exons come up as significant. Its quite possible that is true but I wanted to check somethings > ecs<-testForDEU(ecs, formula0=formula0, formula1=formula1) Testing for differential exon usage. (Progress report: one dot per 100 genes) ...................................................................... ..... ....... There were 50 or more warnings (use warnings() to see the first 50) Warning messages: 1: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite Any idea what this warning is warning me about? Both > ecs<-estimatelog2FoldChanges(ecs) Error in estimatelog2FoldChanges(ecs) : fitExpToVar parameter is not in the design columns, double check ecs at designColumns and > DEXSeqHTML( ecs, FDR=0.1, fitExpToVar="colony:strain" ) Error in DEXSeqHTML(ecs, FDR = 0.1, fitExpToVar = "colony:strain") : fitExpToVar parameter is not in the design columns, double check ecs at designColumns > DEXSeqHTML( ecs, FDR=0.1, fitExpToVar="colony+strain" ) > ecs at designColumns [1] "colony" "strain" "type" I get that in DEXSeqHTML I'm asking for something that doesn't exist. Can I visualise the results (if I have any) due to interaction? Whats going wrong with estimatelog2FoldChanges? Appreciate any light that can be shed Eamonn > ecs = read.HTSeqCounts(countfiles = >file.path("/Users/eamonnmallon/Dropbox/Exon/wholegenome/textfiles", >paste(rownames(samples), "txt", sep=".")), design = samples,flattenedfile >= annotationfile) > sampleNames(ecs) = rownames(samples) > > head( counts(ecs),20) K61 K62 K63 K81 K82 K83 Q61 Q62 Q63 Q81 Q82 XLOC_000001:E001 27 34 23 28 18 33 36 22 49 39 23 XLOC_000001:E002 76 106 106 67 107 159 167 97 127 80 41 XLOC_000001:E003 1 0 2 1 0 0 1 4 0 3 1 XLOC_000001:E004 39 46 63 43 69 106 83 77 73 53 31 XLOC_000001:E005 0 0 0 0 0 0 0 0 0 0 0 XLOC_000002:E001 0 4 14 23 22 1 1 0 0 1 5 XLOC_000003:E001 23 22 10 9 12 32 26 35 24 10 13 XLOC_000004:E001 153 101 121 72 50 198 287 262 201 222 129 XLOC_000005:E001 8 13 6 7 2 11 15 23 20 15 18 XLOC_000006:E001 34 199 301 285 377 102 106 59 54 45 140 XLOC_000007:E001 0 0 2 9 4 0 0 0 0 0 0 XLOC_000008:E001 3 2 3 1 0 4 5 10 2 2 1 XLOC_000009:E001 315 137 87 112 244 185 311 288 179 320 63 XLOC_000010:E001 930 1059 445 317 191 171 485 570 738 865 52 XLOC_000011:E001 19 37 4 8 32 28 9 9 18 12 0 XLOC_000012:E001 1 5 1 2 6 11 27 0 0 4 1 XLOC_000013:E001 5 2 0 10 10 6 7 14 5 12 0 XLOC_000014:E001 1 3 1 0 1 3 9 1 8 0 3 XLOC_000015:E001 15 9 18 8 8 36 12 8 12 7 5 XLOC_000015:E002 15 15 21 12 8 45 30 11 17 13 18 > head(fData(ecs)[,c(1,2,9:12)]) geneID exonID chr start end strand XLOC_000001:E001 XLOC_000001 E001 gi|313870964|gb|AELG01010669.1| 2 577 . XLOC_000001:E002 XLOC_000001 E002 gi|313870964|gb|AELG01010669.1| 656 773 . XLOC_000001:E003 XLOC_000001 E003 gi|313870964|gb|AELG01010669.1| 870 875 . XLOC_000001:E004 XLOC_000001 E004 gi|313870964|gb|AELG01010669.1| 1018 1087 . XLOC_000001:E005 XLOC_000001 E005 gi|313870964|gb|AELG01010669.1| 1088 1088 . XLOC_000002:E001 XLOC_000002 E001 gi|313870968|gb|AELG01010665.1| 85 662 . > ecs<-estimateSizeFactors(ecs) > sizeFactors(ecs) K61 K62 K63 K81 K82 K83 Q61 Q62 Q63 Q81 Q82 0.7890977 1.4112509 1.4477112 0.8912231 1.0392289 1.0893970 1.2205867 0.8808826 0.9740058 1.0123368 0.7635365 > formuladispersion<-count~sample+(colony*strain)+exon #from anders email > ecs<-estimateDispersions(ecs, formula=formuladispersion) Dispersion estimation. (Progress report: one dot per 100 genes) ...................................................................... ..... ....... Warning messages: 1: In .local(object, ...) : Exons with less than 10 counts will not be tested. For more details please see the manual page of 'estimateDispersions', parameter 'minCount' 2: In .local(object, ...) : Genes with more than 70 testable exons will be omitted from the analysis. For more details please see the manual page of 'estimateDispersions', parameter 'maxExon'. > ecs<-fitDispersionFunction(ecs) > formula0<-count~sample+exon+(colony+strain)*exon > >formula1<-count~sample+exon+(colony+strain)*exon+(colony:strain)*I(ex on==e >xonID) > ecs<-testForDEU(ecs, formula0=formula0, formula1=formula1) Testing for differential exon usage. (Progress report: one dot per 100 genes) ...................................................................... ..... ....... There were 50 or more warnings (use warnings() to see the first 50) > ecs<-estimatelog2FoldChanges(ecs) Error in estimatelog2FoldChanges(ecs) : fitExpToVar parameter is not in the design columns, double check ecs at designColumns > res1<-DEUresultTable(ecs) > head(res1) geneID exonID dispersion pvalue padjust meanBase XLOC_000001:E001 XLOC_000001 E001 9.330649e-02 0.1043954 0.8361045 29.695450 XLOC_000001:E002 XLOC_000001 E002 6.637378e-02 0.4553256 0.9404390 98.071027 XLOC_000001:E003 XLOC_000001 E003 9.960544e-01 0.3204769 0.9068146 1.218557 XLOC_000001:E004 XLOC_000001 E004 7.377259e-02 0.3339211 0.9104324 60.072384 XLOC_000001:E005 XLOC_000001 E005 1.000000e+08 NA NA 0.000000 XLOC_000002:E001 XLOC_000002 E001 2.382029e-01 NA NA 6.250462 > table(res1$padjust < 0.1) FALSE 75341 > table ( tapply( res1$padjust < 0.1, geneIDs(ecs), any ) ) FALSE 4847 > sign <- res1[ which(res1$padjust < 0.1), ] > DEXSeqHTML( ecs, FDR=0.1, fitExpToVar="colony:strain" ) Error in DEXSeqHTML(ecs, FDR = 0.1, fitExpToVar = "colony:strain") : fitExpToVar parameter is not in the design columns, double check ecs at designColumns > DEXSeqHTML( ecs, FDR=0.1, fitExpToVar="colony+strain" ) Error in DEXSeqHTML(ecs, FDR = 0.1, fitExpToVar = "colony+strain") : fitExpToVar parameter is not in the design columns, double check ecs at designColumns > ecs at designColumns [1] "colony" "strain" "type" > warnings() Warning messages: 1: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 2: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 3: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 4: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 5: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 6: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 7: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 8: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 9: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 10: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 11: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 12: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 13: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 14: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 15: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 16: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 17: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 18: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 19: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 20: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 21: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 22: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 23: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 24: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 25: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 26: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 27: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 28: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 29: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 30: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 31: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 32: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 33: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 34: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 35: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 36: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 37: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 38: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 39: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 40: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 41: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 42: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 43: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 44: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 45: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 46: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 47: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 48: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 49: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite 50: In chol.default(XVX + lambda * I, pivot = TRUE) : the matrix is either rank-deficient or indefinite Dr Eamonn Mallon Lecturer in Evolutionary Biology Adrian 220 Biology Department University of Leicester http://www2.le.ac.uk/departments/biology/people/mallon On 12/06/2013 08:15, "Simon Anders" <anders at="" embl.de=""> wrote: >On 06/06/13 16:22, Mallon, Eamonn B. (Dr.) wrote: >> Dear all >> I have 11 samples for a cross infection experiment where there are two >>colonies (the hosts K or Q) and 2 strains (6 or 8). >> >> sample colony strain type >> K61 k six single-read >> K62 k six single-read >> K63 k six single-read >> K81 k eight single-read >> K82 k eight single-read >> K83 k eight single-read >> Q61 q six single-read >> Q62 q six single-read >> Q63 q six single-read >> Q81 q eight single-read >> Q82 q eight single-read >> >> I am most interested in finding exon usage differences related to the >>interaction of the colony and strain factors. Following the vignette I >>put the following code together >> >> >> formuladispersion<-count~sample+(colony:strain)+exon >> ecs<-estimateDispersions(ecs, formula=formuladispersion) >> ecs<-fitDispersionFunction(ecs) >> >> formula0<-count~sample+exon+(colony:strain) >> formula1<-count~sample+exon+(colony:strain)*I(exon==exonID) >> ecs<-testForDEU(ecs, formula0=formula0, formula1=formula1) >> >> Does this make sense? > >Not quite. This tests for main effects and interaction in one go, so it >returns as hits all exons whose usage differs between colonies _and/or_ >between strains. You are looking for interactions, i.e., for exons whose >usage is different between strains _and_ where this difference itself >differs between colonies. So, you need > > formuladispersion<-count~sample+(colony*strain)+exon > > formula0<-count~sample+exon+(colony+strain)*exon > >formula1<-count~sample+exon+(colony+strain)*exon+(colony:strain)*I(ex on==e >xonID) > >Things look a bit simpler if you use the new "TRT" functions: > > formuladispersion<-count~sample+(colony*strain)+exon > > formula0<-count~sample+exon+(colony+strain)*exon > formula1<-count~sample+exon+(colony*strain)*exon > > Simon > >_______________________________________________ >Bioconductor mailing list >Bioconductor at r-project.org >https://stat.ethz.ch/mailman/listinfo/bioconductor >Search the archives: >http://news.gmane.org/gmane.science.biology.informatics.conductor
ADD REPLY
0
Entering edit mode
Just looking over my own plot and noticed a typo: On 12/06/13 09:15, Simon Anders wrote: > Not quite. This tests for main effects and interaction in one go, so it > returns as hits all exons whose usage differs between colonies _and/or_ > between strains. You are looking for interactions, i.e., for exons whose > usage is different between strains _and_ where this difference itself > differs between colonies. So, you need > > formuladispersion<-count~sample+(colony*strain)+exon ^ should be "*exon" > > formula0<-count~sample+exon+(colony+strain)*exon > > formula1<-count~sample+exon+(colony+strain)*exon+(colony:strain)*I(e xon==exonID) > > > Things look a bit simpler if you use the new "TRT" functions: > > formuladispersion<-count~sample+(colony*strain)+exon ^ here too > > formula0<-count~sample+exon+(colony+strain)*exon > formula1<-count~sample+exon+(colony*strain)*exon
ADD REPLY

Login before adding your answer.

Traffic: 782 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6