edgeR - GLM for multifactors
1
0
Entering edit mode
Alan Smith ▴ 150
@alan-smith-5987
Last seen 7.7 years ago
United States
Hello List, I'm trying to perform DE analysis using edgeR on the following samples with 2 replicates per condition. WC - Wildtype or Normal control WI - Wildtype or Normal upon Infection LC - Dose1 control LI - Dose1 Infection HC - Dose2 control HI - Dose2 Infection MY design matrix: HC HI LC LI WC WI WC1 0 0 0 0 1 0 WC2 0 0 0 0 1 0 WI1 0 0 0 0 0 1 WI2 0 0 0 0 0 1 LC1 0 0 1 0 0 0 LC2 0 0 1 0 0 0 LI1 0 0 0 1 0 0 LI2 0 0 0 1 0 0 HC1 1 0 0 0 0 0 HC2 1 0 0 0 0 0 HI1 0 1 0 0 0 0 HI2 0 1 0 0 0 0 Cond.contrasts <- makeContrasts(DoseEffect1=(LI-LC)-(WI-WC), DoseEffect2=(HI-HC)-(WI-WC), OverallDoseEffect=(HI+HC+LI+LC)-(WI+WC), InfectionEffect=(WI+HI+LI)-(WC+HC+LC), levels=design) With the code below I believe I managed to get DE genes in one to one comparison but I don't think I got through with the overall dose effect and infection effect (contrast made as above). Please go over the condition level contrasts and correct me if I'm wrong. Hope this information is not too little/confusing to understand the problem. Appreciate your time and help. Thank you, Alan library(edgeR) xim <- read.delim("NreadCounts.txt", row.names=1, stringsAsFactors=FALSE) names(x) group = factor(c("WC", "WC", "WI", "WI", "LC", "LC", "LI", "LI", "HC", "HC", "HI", "HI")) y <- DGEList(counts=x, group=group) keep <- rowSums (cpm(y)>1) >= 3 y2 <- y[keep,] dim(y2) [1] 31865 12 y2$samples$lib.size <- colSums(y2$counts) y3 <- calcNormFactors (y2) levels (y3$samples$group) [1] "HC" "HI" "LC" "LI" "WC" "WI" design <- model.matrix(~0+group, data=y3$samples) colnames(design) <- levels(group) y3 <- estimateGLMCommonDisp(y3, design, verbose=TRUE) y3 <- estimateGLMTrendedDisp(y3, design) y3 <- estimateGLMTagwiseDisp(y3, design) fit <- glmFit(y3, design) OneONone.contrasts <- makeContrasts(HIvsHC=HI-HC, LIvsLC=LI-LC, WIvsWC=WI-WC, HCvsWC=HC-WC, LCvsWC=LC-WC, HIvsWI=HI-WI, LIvsWI=LI-WI, levels=design) > OneONone.contrasts Contrasts Levels HIvsHC LIvsLC WIvsWC HCvsWC LCvsWC HIvsWI LIvsWI HC -1 0 0 1 0 0 0 HI 1 0 0 0 0 1 0 LC 0 -1 0 0 1 0 0 LI 0 1 0 0 0 0 1 WC 0 0 -1 -1 -1 0 0 WI 0 0 1 0 0 -1 -1 Cond.contrasts <- makeContrasts(DoseEffect1=(LI-LC)-(WI-WC), DoseEffect2=(HI-HC)-(WI-WC), OverallDoseEffect=(HI+HC+LI+LC)-(WI+WC), InfectionEffect=(WI+HI+LI)-(WC+HC+LC), levels=design) Cond.contrasts Contrasts Levels DoseEffect1 DoseEffect2 OverallDoseEffect InfectionEffect HC 0 -1 1 -1 HI 0 1 1 1 LC -1 0 1 -1 LI 1 0 1 1 WC 1 1 -1 -1 WI -1 -1 -1 1 > lrt.OverallDoseEffect <- glmLRT(fit, contrast=Cond.contrasts[,"OverallDoseEffect"]) > summary(de<-decideTestsDGE(lrt.OverallDoseEffect)) [,1] -1 31865 0 0 1 0 > lrt.InfectionEffect <- glmLRT(fit, contrast=Cond.contrasts[,"InfectionEffect"]) > summary(de<-decideTestsDGE(lrt.InfectionEffect)) [,1] -1 270 0 31108 1 487 > sessionInfo() R version 3.0.1 (2013-05-16) Platform: i386-w64-mingw32/i386 (32-bit) locale: [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252 [4] LC_NUMERIC=C LC_TIME=English_United States.1252 attached base packages: [1] splines stats graphics grDevices utils datasets methods base other attached packages: [1] edgeR_3.2.3 limma_3.16.5 [[alternative HTML version deleted]]
GO edgeR GO edgeR • 958 views
ADD COMMENT
0
Entering edit mode
@james-w-macdonald-5106
Last seen 3 days ago
United States
Hi Alan, On 6/11/2013 12:14 AM, Alan Smith wrote: > Hello List, > > I'm trying to perform DE analysis using edgeR on the following samples with > 2 replicates per condition. > > WC - Wildtype or Normal control > WI - Wildtype or Normal upon Infection > LC - Dose1 control > LI - Dose1 Infection > HC - Dose2 control > HI - Dose2 Infection > > MY design matrix: > HC HI LC LI WC WI > WC1 0 0 0 0 1 0 > WC2 0 0 0 0 1 0 > WI1 0 0 0 0 0 1 > WI2 0 0 0 0 0 1 > LC1 0 0 1 0 0 0 > LC2 0 0 1 0 0 0 > LI1 0 0 0 1 0 0 > LI2 0 0 0 1 0 0 > HC1 1 0 0 0 0 0 > HC2 1 0 0 0 0 0 > HI1 0 1 0 0 0 0 > HI2 0 1 0 0 0 0 > > Cond.contrasts<- makeContrasts(DoseEffect1=(LI-LC)-(WI-WC), > DoseEffect2=(HI-HC)-(WI-WC), OverallDoseEffect=(HI+HC+LI+LC)-(WI+WC), > InfectionEffect=(WI+HI+LI)-(WC+HC+LC), levels=design) > > With the code below I believe I managed to get DE genes in one to one > comparison but I don't think I got through with the overall dose effect and > infection effect (contrast made as above). > Please go over the condition level contrasts and correct me if I'm wrong. You are wrong ;-D For a contrast to be valid, the coefficients are supposed to add up to zero. So as an example, let's look at your first contrast: (LI-LC)-(WI-WC) this can be written as LI - LC - WI + WC or more explicitly as 1*LI - 1*LC - 1*WI + 1*WC and the coefficients are then 1-1-1+1 which adds up to zero. However in your third contrast, the coefficients don't add up to zero. In these instances (where you are trying to compare the mean of one group to the mean of another), it is easiest to just divide by the number of groups. So you would want OverallDoseEffect=(HI+HC+LI+LC)/4-(WI+WC)/2 I think the fourth contrast is OK, as the coefficients add up to zero, but you can always divide each group by three, which will at least (in my mind) explicitly indicate that you are looking at the comparison of the means for each group. Best, Jim > > Hope this information is not too little/confusing to understand the problem. > > Appreciate your time and help. > > Thank you, > Alan > > > library(edgeR) > xim<- read.delim("NreadCounts.txt", row.names=1, stringsAsFactors=FALSE) > names(x) > group = factor(c("WC", "WC", "WI", "WI", "LC", "LC", "LI", "LI", "HC", > "HC", "HI", "HI")) > y<- DGEList(counts=x, group=group) > keep<- rowSums (cpm(y)>1)>= 3 > y2<- y[keep,] > dim(y2) > [1] 31865 12 > y2$samples$lib.size<- colSums(y2$counts) > y3<- calcNormFactors (y2) > levels (y3$samples$group) > [1] "HC" "HI" "LC" "LI" "WC" "WI" > design<- model.matrix(~0+group, data=y3$samples) > colnames(design)<- levels(group) > y3<- estimateGLMCommonDisp(y3, design, verbose=TRUE) > y3<- estimateGLMTrendedDisp(y3, design) > y3<- estimateGLMTagwiseDisp(y3, design) > fit<- glmFit(y3, design) > OneONone.contrasts<- makeContrasts(HIvsHC=HI-HC, LIvsLC=LI-LC, > WIvsWC=WI-WC, HCvsWC=HC-WC, LCvsWC=LC-WC, HIvsWI=HI-WI, LIvsWI=LI- WI, > levels=design) >> OneONone.contrasts > Contrasts > Levels HIvsHC LIvsLC WIvsWC HCvsWC LCvsWC HIvsWI LIvsWI > HC -1 0 0 1 0 0 0 > HI 1 0 0 0 0 1 0 > LC 0 -1 0 0 1 0 0 > LI 0 1 0 0 0 0 1 > WC 0 0 -1 -1 -1 0 0 > WI 0 0 1 0 0 -1 -1 > > Cond.contrasts<- makeContrasts(DoseEffect1=(LI-LC)-(WI-WC), > DoseEffect2=(HI-HC)-(WI-WC), OverallDoseEffect=(HI+HC+LI+LC)-(WI+WC), > InfectionEffect=(WI+HI+LI)-(WC+HC+LC), levels=design) > Cond.contrasts > Contrasts > Levels DoseEffect1 DoseEffect2 OverallDoseEffect InfectionEffect > HC 0 -1 1 -1 > HI 0 1 1 1 > LC -1 0 1 -1 > LI 1 0 1 1 > WC 1 1 -1 -1 > WI -1 -1 -1 1 >> lrt.OverallDoseEffect<- glmLRT(fit, > contrast=Cond.contrasts[,"OverallDoseEffect"]) >> summary(de<-decideTestsDGE(lrt.OverallDoseEffect)) > [,1] > -1 31865 > 0 0 > 1 0 >> lrt.InfectionEffect<- glmLRT(fit, > contrast=Cond.contrasts[,"InfectionEffect"]) >> summary(de<-decideTestsDGE(lrt.InfectionEffect)) > [,1] > -1 270 > 0 31108 > 1 487 > > >> sessionInfo() > R version 3.0.1 (2013-05-16) > Platform: i386-w64-mingw32/i386 (32-bit) > > locale: > [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United > States.1252 LC_MONETARY=English_United States.1252 > [4] LC_NUMERIC=C LC_TIME=English_United > States.1252 > > attached base packages: > [1] splines stats graphics grDevices utils datasets methods > base > > other attached packages: > [1] edgeR_3.2.3 limma_3.16.5 > > [[alternative HTML version deleted]] > > _______________________________________________ > Bioconductor mailing list > Bioconductor at r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor -- James W. MacDonald, M.S. Biostatistician University of Washington Environmental and Occupational Health Sciences 4225 Roosevelt Way NE, # 100 Seattle WA 98105-6099
ADD COMMENT

Login before adding your answer.

Traffic: 622 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6