Entering edit mode
hi there !!
I am analyzing miRNA-seq data with DESeq, and I am getting no
significant
results, and I cannot see why is so.
My experiment has two conditions and two replicates per condition:
I execute it in R as follows:
*countTable = read.table (
"/mnt/TB3/ograna/Ozge_Uluckan/miRNA-
seq/Analysis/tables_for_DESeq/cOB1_vs_tOB100"
, header=TRUE, row.names=1)
experiment_design = data.frame(
row.names = colnames(countTable),
condition=c("OB1","OB1","OB100","OB100"),
libType=c("single-end","single-end","single-end","single-end")
)
library("DESeq")
condition=factor(c("OB1","OB1","OB100","OB100"))
cds = newCountDataSet( countTable, condition )
cds = estimateSizeFactors( cds )
normalizedReadCounts = counts( cds, normalized=TRUE )
write.csv( normalizedReadCounts,
file="cOB1_vs_tOB100.DESeq_normalizedReadCounts.csv" )
cds = estimateDispersions( cds )
res = nbinomTest( cds, "OB1", "OB100" )
write.csv( res, file="cOB1_vs_tOB100.DESeq_diffExp.csv" )*
I am getting the following size factors:
> sizeFactors(cds)
OB.1OU OB.2OU OB100.1OU OB100.2OU
1 1 1 1
the differential expression table sorted by 'padj' is as follows (I am
showing just a small set):
number id baseMean baseMeanA baseMeanB foldChange
log2FoldChange pval padj
*340 mmu-miR-204-5p 31.5 12.5 50.5 4.04 2.014355293
6.466284630369E-005 0.122859408
69 mmu-miR-1247-5p 57.5 32.5 82.5 2.5384615385
1.3439544012 0.0010710548 1
170 mmu-miR-15b-3p 99.25 135.5 63 0.4649446494
-1.1048691179 0.0024355731 1
363 mmu-miR-214-3p 591.25 767 415.5 0.5417209909
-0.8843781007 0.0040302141 1
1122 mmu-miR-664-3p 55.5 76 35 0.4605263158
-1.1186444965 0.0065510324 1
630 mmu-miR-335-3p 9.5 15.5 3.5 0.2258064516
-2.1468413883 0.0093262341 1
997 mmu-miR-574-3p 282 364.5 199.5 0.5473251029
-0.8695300681 0.0101138488 1
176 mmu-miR-17-3p 29 41 17 0.4146341463
-1.2700891634
0.0109905451 1
1898 mmu-miR-99a-5p 1254.5 1568.5 940.5 0.5996174689
-0.7378856803 0.0140500521 1
846 mmu-miR-467a-5p 11 17 5 0.2941176471
-1.7655347464
0.019028208 1
1900 mmu-miR-99b-5p 6246 7702.5 4789.5 0.6218111003
-0.6854517236 0.0204136071 1*
There is no even one significant miRNA. Is it that I am missing
something
or doing something wrong? What does it mean that all the 'padj' values
are
'1' with the exception of the first one '0.122' ?
Is there a way to change the method used to correct the p-values?
thanks very much in advance !!!
regards.
--
Osvaldo Graña
Bionformatics Unit, Structural Biology and Biocomputing Programme
Spanish National Cancer Research Centre (CNIO)
Melchor Fernández Almagro, 3 - 28029 Madrid
+34 91 732 8000 (ext 3062)
http://bioinfo.cnio.es www.cnio.es)
<ograna@cnio.es>
[[alternative HTML version deleted]]