Entering edit mode
Jakob Hedegaard
▴
170
@jakob-hedegaard-823
Last seen 10.2 years ago
Hi
We are studying the impact of different traits on the expression in
pigs using cDNA microarray. We have some problems using Limma when
taking within-array replicated spots into acount. Analysing the
effects of a single trait (like sick-healthy) works fine, but combing
traits (like far6syg-far2syg, far=father, syg=sick) results in the
presence of NA's in the output from gls.series. We are using R ver
1.9.0 and Bioconductor 1.4.
What we do:
> targets <- readTargets("targets_farXsyg.txt")
> targets
SlideNumber Cy3 Cy5
1 12755473 mix far6rask
2 12755474 mix far6syg
3 12755475 mix far2rask
4 12755476 mix far2syg
5 12755477 mix far6rask
.......
25 12759971 mix far2syg
26 12760017 mix far6syg
27 12760018 mix far6rask
28 12760019 mix far6syg
>
> model <- modelMatrix(targets, ref="mix")
Found unique target names:
far2rask far2syg far6rask far6syg mix
> model
far2rask far2syg far6rask far6syg
1 0 0 1 0
2 0 0 0 1
3 1 0 0 0
4 0 1 0 0
5 0 0 1 0
...........
25 0 1 0 0
26 0 0 0 1
27 0 0 1 0
28 0 0 0 1
>
> contrast.matrix <- makeContrasts(far6rask-far6syg, far2rask-far2syg,
far6rask-far2syg, far6syg-far2rask, far6rask-far2rask, far6syg-
far2syg, levels=model)
> contrast.matrix
far6rask - far6syg far2rask - far2syg far6rask - far2syg
far2rask 0 1 0
far2syg 0 -1 -1
far6rask 1 0 1
far6syg -1 0 0
far6syg - far2rask far6rask - far2rask far6syg - far2syg
far2rask -1 -1 0
far2syg 0 0 -1
far6rask 0 1 0
> contrast.matrix
far6rask - far6syg far2rask - far2syg far6rask - far2syg
far2rask 0 1 0
far2syg 0 -1 -1
far6rask 1 0 1
far6syg -1 0 0
far6syg - far2rask far6rask - far2rask far6syg - far2syg
far2rask -1 -1 0
far2syg 0 0 -1
far6rask 0 1 0
far6syg 1 0 1
>
> design <- model %*% contrast.matrix
> design
far6rask - far6syg far2rask - far2syg far6rask - far2syg
1 1 0 1
2 -1 0 0
3 0 1 0
4 0 -1 -1
5 1 0 1
............
25 0 -1 -1
26 -1 0 0
27 1 0 1
28 -1 0 0
far6syg - far2rask far6rask - far2rask far6syg - far2syg
1 0 1 0
2 1 0 1
3 -1 -1 0
4 0 0 -1
5 0 1 0
...........
25 0 0 -1
26 1 0 1
27 0 1 0
28 1 0 1
> cor <- duplicateCorrelation(MArep$M,design,ndups=4)
> fitcor <- gls.series(MArep$M, design,ndups=4,correlation=cor$cor)
> fitcor$coefficients[1:5,]
far6rask - far6syg far2rask - far2syg far6rask - far2syg
[1,] 0.019897478 -0.058434294 -0.06046312
[2,] -0.006362523 0.061185620 -0.11697534
[3,] -0.003859953 -0.050241979 -0.02122334
[4,] 0.013675174 -0.003196691 -0.02909511
[5,] 0.005154980 0.043414444 -0.04125395
far6syg - far2rask far6rask - far2rask far6syg - far2syg
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
[4,] NA NA NA
[5,] NA NA NA
>
For some reason (?) it is always the final three contrasts that
results in NA?s - chancing the design matrix by flipping the final
three contrast with the first three contrasts, still results in NA's
in the final three contrast (which were the the first three before
flipping......). Some technical problem? The design matrix ("design")
are of dim 28x6 as it it should be......
Any suggestions?
------------------------------------------------------
Jakob Hedegaard
Danish Institute of Agricultural Sciences
Department of Animal Breeding and Genetics
Research Centre Foulum
P.O. Box 50
DK-8830 Tjele, Denmark
Tel: (+45) 8999 1363
Fax: (+45) 8999 1300