Entering edit mode
rohan bareja
▴
200
@rohan-bareja-4905
Last seen 7.3 years ago
Hi,
I would like to get information on which samples are cases and which
are controls.
I am using the following commands :
#creating GDS list
annotgds = dbGetQuery(con,"select GDS from gds")
#getting data for first 20 GDS
gdslist <- sapply(annotgds[1:20,1],getGEO)
#using column method get the info
gds_col=sapply(gdslist[1:20],function(a) {Columns(a)}
Below is the result for first two GDS:
$GDS10
sample tissue strain disease.state
description
1 GSM582 spleen NOD diabetic Value for
GSM582: NOD_S1; src: Spleen
2 GSM589 spleen NOD diabetic Value for
GSM589: NOD_S2; src: Spleen
3 GSM583 spleen Idd3 diabetic-resistant Value for
GSM583: Idd3_S1; src: Spleen
4 GSM590 spleen Idd3 diabetic-resistant Value for
GSM590: Idd3_S2; src: Spleen
5 GSM584 spleen Idd5 diabetic-resistant Value for
GSM584: Idd5_S1; src: Spleen
6 GSM591 spleen Idd5 diabetic-resistant Value for
GSM591: Idd5_S2; src: Spleen
7 GSM585 spleen Idd3+Idd5 diabetic-resistant Value for
GSM585: Idd3+5_S1; src: Spleen
8 GSM592 spleen Idd3+Idd5 diabetic-resistant Value for
GSM592: Idd3+5_S2; src: Spleen
9 GSM586 spleen Idd9 diabetic-resistant Value for
GSM586: Idd9_S1; src: Spleen
10 GSM593 spleen Idd9 diabetic-resistant Value for
GSM593: Idd9_S2; src: Spleen
11 GSM587 spleen B10.H2g7 nondiabetic Value for
GSM587: B10.H2g7_S1; src: Spleen
12 GSM594 spleen B10.H2g7 nondiabetic Value for
GSM594: B10.H2g7_S2; src: Spleen
13 GSM588 spleen B10.H2g7 Idd3 nondiabetic Value for GSM588:
B10.H2g7 Idd3_S1; src: Spleen
14 GSM595 spleen B10.H2g7 Idd3 nondiabetic Value for GSM595:
B10.H2g7 Idd3_S2; src: Spleen
15 GSM596 thymus NOD diabetic Value for
GSM596: NOD_T1; src: Thymus
16 GSM603 thymus NOD diabetic Value for
GSM603: NOD_T2; src: Thymus
17 GSM597 thymus Idd3 diabetic-resistant Value for
GSM597: Idd3_T1; src: Thymus
18 GSM604 thymus Idd3 diabetic-resistant Value for
GSM604: Idd3_T2; src: Thymus
19 GSM598 thymus Idd5 diabetic-resistant Value for
GSM598: Idd5_T1; src: Thymus
20 GSM605 thymus Idd5 diabetic-resistant Value for
GSM605: Idd5_T2; src: Thymus
21 GSM599 thymus Idd3+Idd5 diabetic-resistant Value for
GSM599: Idd3+5_T1; src: Thymus
22 GSM606 thymus Idd3+Idd5 diabetic-resistant Value for
GSM606: Idd3+5_T2; src: Thymus
23 GSM600 thymus Idd9 diabetic-resistant Value for
GSM600: Idd9_T1; src: Thymus
24 GSM607 thymus Idd9 diabetic-resistant Value for
GSM607: Idd9_T2; src: Thymus
25 GSM601 thymus B10.H2g7 nondiabetic Value for
GSM601: B10.H2g7_T1; src: Thymus
26 GSM608 thymus B10.H2g7 nondiabetic Value for
GSM608: B10.H2g7_T2; src: Thymus
27 GSM602 thymus B10.H2g7 Idd3 nondiabetic Value for GSM602:
B10.H2g7 Idd3_T1; src: Thymus
28 GSM609 thymus B10.H2g7 Idd3 nondiabetic Value for GSM609:
B10.H2g7 Idd3_T2; src: Thymus
$GDS100
sample protocol time
1 GSM549 not irradiated 0 minute
2 GSM542 not irradiated 20 minute
3 GSM543 not irradiated 60 minute
4 GSM547 irradiated 5 minute
5 GSM544 irradiated 10 minute
6 GSM545 irradiated 20 minute
7 GSM546 irradiated 40 minute
8 GSM548 irradiated 60 minute
The columns are different in each GDS,so I am not able to get that
information and combine it.
ii) The other technique I used is the expression set.The commands for
this are:
eset_list <- sapply(gdslist[1:3],GDS2eSet,do.log2=TRUE)
eset_col=sapply(eset_list[1:3],function(a) {pData(a)}
$GDS10
sample tissue strain disease.state
description
GSM582 GSM582 spleen NOD diabetic Value
for GSM582: NOD_S1; src: Spleen
GSM589 GSM589 spleen NOD diabetic Value
for GSM589: NOD_S2; src: Spleen
GSM583 GSM583 spleen Idd3 diabetic-resistant Value
for GSM583: Idd3_S1; src: Spleen
GSM590 GSM590 spleen Idd3 diabetic-resistant Value
for GSM590: Idd3_S2; src: Spleen
GSM584 GSM584 spleen Idd5 diabetic-resistant Value
for GSM584: Idd5_S1; src: Spleen
GSM591 GSM591 spleen Idd5 diabetic-resistant Value
for GSM591: Idd5_S2; src: Spleen
GSM585 GSM585 spleen Idd3+Idd5 diabetic-resistant Value for
GSM585: Idd3+5_S1; src: Spleen
GSM592 GSM592 spleen Idd3+Idd5 diabetic-resistant Value for
GSM592: Idd3+5_S2; src: Spleen
GSM586 GSM586 spleen Idd9 diabetic-resistant Value
for GSM586: Idd9_S1; src: Spleen
GSM593 GSM593 spleen Idd9 diabetic-resistant Value
for GSM593: Idd9_S2; src: Spleen
GSM587 GSM587 spleen B10.H2g7 nondiabetic Value for
GSM587: B10.H2g7_S1; src: Spleen
GSM594 GSM594 spleen B10.H2g7 nondiabetic Value for
GSM594: B10.H2g7_S2; src: Spleen
GSM588 GSM588 spleen B10.H2g7 Idd3 nondiabetic Value for
GSM588: B10.H2g7 Idd3_S1; src: Spleen
GSM595 GSM595 spleen B10.H2g7 Idd3 nondiabetic Value for
GSM595: B10.H2g7 Idd3_S2; src: Spleen
GSM596 GSM596 thymus NOD diabetic Value
for GSM596: NOD_T1; src: Thymus
GSM603 GSM603 thymus NOD diabetic Value
for GSM603: NOD_T2; src: Thymus
GSM597 GSM597 thymus Idd3 diabetic-resistant Value
for GSM597: Idd3_T1; src: Thymus
GSM604 GSM604 thymus Idd3 diabetic-resistant Value
for GSM604: Idd3_T2; src: Thymus
GSM598 GSM598 thymus Idd5 diabetic-resistant Value
for GSM598: Idd5_T1; src: Thymus
GSM605 GSM605 thymus Idd5 diabetic-resistant Value
for GSM605: Idd5_T2; src: Thymus
GSM599 GSM599 thymus Idd3+Idd5 diabetic-resistant Value for
GSM599: Idd3+5_T1; src: Thymus
GSM606 GSM606 thymus Idd3+Idd5 diabetic-resistant Value for
GSM606: Idd3+5_T2; src: Thymus
GSM600 GSM600 thymus Idd9 diabetic-resistant Value
for GSM600: Idd9_T1; src: Thymus
GSM607 GSM607 thymus Idd9 diabetic-resistant Value
for GSM607: Idd9_T2; src: Thymus
GSM601 GSM601 thymus B10.H2g7 nondiabetic Value for
GSM601: B10.H2g7_T1; src: Thymus
GSM608 GSM608 thymus B10.H2g7 nondiabetic Value for
GSM608: B10.H2g7_T2; src: Thymus
GSM602 GSM602 thymus B10.H2g7 Idd3 nondiabetic Value for
GSM602: B10.H2g7 Idd3_T1; src: Thymus
GSM609 GSM609 thymus B10.H2g7 Idd3 nondiabetic Value for
GSM609: B10.H2g7 Idd3_T2; src: Thymus
$GDS100
sample protocol time
GSM549 GSM549 not irradiated 0 minute
GSM542 GSM542 not irradiated 20 minute
GSM543 GSM543 not irradiated 60 minute
GSM547 GSM547 irradiated 5 minute
GSM544 GSM544 irradiated 10 minute
GSM545 GSM545 irradiated 20 minute
GSM546 GSM546 irradiated 40 minute
GSM548 GSM548 irradiated 60 minute
here, also the results are same and I am not able to extract the
information I need due to difference in column names.
Can anyone help on this?
From my another post,
https://stat.ethz.ch/pipermail/bioconductor/2013-December/056361.html
I need Gene information as well but when I am looking over my
gplllist object
annotgpl = dbGetquery(con,"select distinct GPL from gds")
gpllist <- sapply(annotgpl[1:438,1],getGEO,AnnotGPL=TRUE)
genes_new<- unlist(sapply(gpllist[1:3], function(a) {Table(a)[,'Gene
ID']}))
This is the result of first 3 gene id's in first gpl object(GPL13)
using the command above. "1""GPL13"
"13""GPL13"
"26""GPL13" However, I am getting altogether different gene ids's
while doing it for all 3 gpl objects together as seen above.If I am
doing it separately, then only i am getting the gene id's which are
the correct ones, that I notice in gpllist object.
The count of genes in each case (doing together vs separate )remain
same . ii.) genes_new<- unlist(sapply(gpllist[1], function(a)
{Table(a)[,'Gene ID']})) "818888" "GPL13"
"821523" "GPL13"
"824405" "GPL13"
I will really appreciate any help in this.
Thanks in advance,
Rohan
[[alternative HTML version deleted]]