Entering edit mode
Guest User
★
13k
@guest-user-4897
Last seen 10.4 years ago
Hi,
I wanted to use a normalised read count matrix from EDAseq downstream
in DESeq2 analysis. I am not very clear on how to do so from the
vignette.
Following are the steps I followed -
## EDAseq - normalising count matrix by GC content
> dataWithin <- withinLaneNormalization(data, "pct_gc", which =
"full")
> dataNorm <- betweenLaneNormalization(dataWithin, which = "full")
## I normalised the counts itself instead of generating the offsets as
mentioned in the EDAseq vignetter
### DESeq2
> ??
> dds <- estimateDispersions(dds)
> dds <- nbinomWaldTest(dds)
> res <- results(dds2)
I dont know how to create a normalization factor matrix. The DESeq2
vignette on the other hand mentions that normalization factors should
be on the scale of the counts, like size factors,
and unlike o???sets which are typically on the scale of the predictors
(i.e. the logarithmic scale for the
negative binomial GLM).
So in that case should I generate the offset values from EDAseq ie.
> dataWithin <- withinLaneNormalization(data, "pct_gc", which =
"full",offset=T)
> dataNorm <- betweenLaneNormalization(dataWithin, which =
"full",offset=T)
> EDASeqNormFactors <- exp(-1 * offst(dataNorm))
> normalizationFactors(dds) <- EDASeqNormFactors
> dds <- estimateDispersions(dds)
> dds <- nbinomWaldTest(dds)
> res <- results(dds2)
-- output of sessionInfo():
R version 3.1.0 (2014-04-10)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats graphics grDevices utils datasets
methods
[8] base
other attached packages:
[1] DESeq2_1.4.5 RcppArmadillo_0.4.300.0 Rcpp_0.11.1
[4] EDASeq_1.10.0 aroma.light_2.0.0
matrixStats_0.8.14
[7] ShortRead_1.22.0 GenomicAlignments_1.0.1 BSgenome_1.32.0
[10] Rsamtools_1.16.0 GenomicRanges_1.16.3
GenomeInfoDb_1.0.2
[13] Biostrings_2.32.0 XVector_0.4.0 IRanges_1.22.7
[16] BiocParallel_0.6.1 Biobase_2.24.0
BiocGenerics_0.10.0
loaded via a namespace (and not attached):
[1] annotate_1.42.0 AnnotationDbi_1.26.0 BatchJobs_1.2
[4] BBmisc_1.6 bitops_1.0-6 brew_1.0-6
[7] codetools_0.2-8 DBI_0.2-7 DESeq_1.16.0
[10] digest_0.6.4 fail_1.2 foreach_1.4.2
[13] genefilter_1.46.1 geneplotter_1.42.0 grid_3.1.0
[16] hwriter_1.3 iterators_1.0.7 lattice_0.20-29
[19] latticeExtra_0.6-26 locfit_1.5-9.1 plyr_1.8.1
[22] RColorBrewer_1.0-5 R.methodsS3_1.6.1 R.oo_1.18.0
[25] RSQLite_0.11.4 sendmailR_1.1-2 splines_3.1.0
[28] stats4_3.1.0 stringr_0.6.2 survival_2.37-7
[31] tools_3.1.0 XML_3.98-1.1 xtable_1.7-3
[34] zlibbioc_1.10.0
--
Sent via the guest posting facility at bioconductor.org.