Entering edit mode
Hello all,
I do need some help on analyzing such unorganized data. Please help me
out. Thank you so much!
I basically followed the analysis of multi-level experiments in limma
user guide. But I do not feel right about the code below. Please give
me some suggestions.
# I want to compare Normal vs. Tumor negative, and Normal vs Tumor
positive. There are partial pairing (subject) and batch effect (chip).
Treat <- factor(paste(targets$chip,targets$type,sep="."))
design <- model.matrix(~0+Treat)
colnames(design) <- levels(Treat)
corfit <- duplicateCorrelation(y,design,block=targets$subject)
corfit$consensus
fit <-
lmFit(y,design,block=targets$subject,correlation=corfit$consensus)
cm <- makeContrasts(TposvsN=(a1.Tpos+a2.Tpos+a3.Tpos)/3-(a1.N+a2.N)/2,
TnegvsN=(a1.Tneg+a3.Tneg)/2-(a1.N+a2.N)/2, levels=design) ????
fit2 <- contrasts.fit(fit, cm)
fit2 <- eBayes(fit2)
topTable(fit2, coef=1, sort.by="p")
sample
type
subject
chip
s1
Tneg
1
a1
s2
N
1
a1
s3
Tpos
2
a1
s4
N
2
a1
s5
Tneg
3
a1
s6
N
3
a1
s7
Tpos
4
a1
s8
N
4
a1
s9
Tpos
5
a2
s10
N
5
a2
s11
N
6
a2
s12
Tpos
7
a2
s13
N
7
a2
s14
Tpos
8
a2
s15
N
8
a2
s16
Tneg
9
a3
s17
Tneg
10
a3
s18
Tneg
11
a3
s19
Tpos
6
a3
s20
Tpos
12
a3
s21
Tneg
13
a3
s22
Tpos
14
a3
Thanks,
Xiayu
[[alternative HTML version deleted]]