Entering edit mode
Guest User
★
13k
@guest-user-4897
Last seen 10.3 years ago
I would like to analyse my sequencing data with anota, starting with
the function "anotaPerformQc".
Regrettably I get the following error message:
anotaQcOut <- anotaPerformQc(dataT= my_data_cytosolic_mRNA,
dataP=my_data_translational_Activity, phenoVec=vec, nDfbSimData=500,
useProgBar=TRUE)
Running anotaPerformQc quality control
Calculating omnibus interactions & effects and dfbetas
Error in if (groupSlope[i] > 1 | groupSlope[i] < 0) { : missing value
where TRUE/FALSE needed
> traceback()
1: anotaPerformQc(dataT = t, dataP = r, phenoVec = vec, nDfbSimData =
500,
useProgBar = TRUE)
My input data looks as follows:
> head(my_data_cytosolic_mRNA)
1 2 3 4 5 6 7 8
A2M 3 0 7 0 6 4 5 13
A2ML1 4 11 3 0 3 1 6 3
A2MP1 2 2 2 0 0 2 2 6
A3GALT2 0 1 1 0 0 0 1 3
A4GALT 0 0 0 0 0 0 0 0
A4GNT 0 0 3 0 0 0 1 0
> head(my_data_translational_Activity)
1 2 3 4 5 6 7 8
A2M 9 0 18 4 9 41 0 0
A2ML1 4 5 1 1 0 0 2 0
A2MP1 0 0 0 0 0 0 0 0
A3GALT2 2 0 1 0 1 1 5 0
A4GALT 0 0 0 0 0 0 0 0
A4GNT 0 0 0 0 0 0 0 0
> vec
[1] "wt" "wt" "wt" "wt" "mut" "mut" "mut" "mut"
I read the anota vignette and reference manual, which mentions
"groupSlope" in the explanation for the "omniGroupStats" argument. The
arguments for the input data is simply described as "data matrix with
non numerical rownames".
Looking at the sample data provided with the package (see below) I
ASSUME I need to process the sequencing count data before I use it
within anota.
> head(anota_example_counts)
yorf norm dens count len total
1 15S_rRNA 1471.349 1261.805 2111 1673 857584
2 21S_rRNA 1192.194 1022.406 4563 4463 857584
3 HRA1 0.000 0.000 0 588 857584
4 LSR1 1548.272 1327.773 1592 1199 857584
5 NME1 105.715 90.659 33 364 857584
> head(anota_example_processed)
[,1]
15S_rRNA 5.6848584
21S_rRNA 5.3864571
HRA1 0.5289467
LSR1 5.7882936
NME1 2.9789340
In the following paper introducing the anota package
(http://www.pnas.org/content/107/50/21487.long) I found how the
authors processed the sequencing data for analysis:
"For the sequencing dataset, we used the count data
supplied by the authors, filtered for identifiers originating from the
coding
regions, and used quantile normalization and a transformation to
stabilize
the variance."
In case I am right that my data needs processing first, could please
somebody suggest how I do "quantile normalization and a transformation
to stabilize the variance" with my data.
If the error I get is due to something else, please let me know how to
solve my problem.
I am new to R and bioconductor, please accept my apologies if I have
overlooked something obvious.
Thank you very much for your help!
-- output of sessionInfo():
> sessionInfo()
R version 3.0.2 (2013-09-25)
Platform: i386-w64-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=German_Switzerland.1252
LC_CTYPE=German_Switzerland.1252
LC_MONETARY=German_Switzerland.1252 LC_NUMERIC=C
[5] LC_TIME=German_Switzerland.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] edgeR_3.4.2 limma_3.18.13 anota_1.10.0 qvalue_1.36.0
loaded via a namespace (and not attached):
[1] Biobase_2.22.0 BiocGenerics_0.8.0 MASS_7.3-30
multtest_2.18.0 parallel_3.0.2 splines_3.0.2 stats4_3.0.2
survival_2.37-7
[9] tcltk_3.0.2 tools_3.0.2
--
Sent via the guest posting facility at bioconductor.org.