Entering edit mode
Ramon Diaz
★
1.1k
@ramon-diaz-159
Last seen 10.3 years ago
Dear Naomi and Gordon,
Just in case it helps someone else, I am attaching a more verbose
version of
the code snippet that Gordon sent, because I found the "diag(p)
[,attr(X,"assign")==3]" non-intuitive, so I called makeContrasts
explicitly.
This is the example:
*****************************************************************
## treat is a factor with three levels; age is a continuous variable.
X <- model.matrix( ~ treat*age.centered)
fit <- lmFit(d.clean, X)
p <- ncol(X)
cont.ia <- diag(p)[,attr(d.trt.BY.age3,"assign")==3]
fit.ia <- eBayes(contrasts.fit(fit, cont.ia))
############# Using my more verbose apporach
X2 <- model.matrix( ~ treat*age.centered)
colnames(X2) <- c("Intercept", "Colon", "Mama",
"age", "Colon.by.age", "Mama.by.age")
contrasts.trt.BY.age <- makeContrasts(Colon.by.age,
Mama.by.age,
levels = X2)
fit2 <- lmFit(d.clean, X2)
fit.ia2 <- eBayes(contrasts.fit(fit2,
contrasts.trt.BY.age))
### We can of course do instead (which I like better)
X2 <- model.matrix(~ -1 + treat + age.centered +
treat*age.centered)
colnames(X2) <- c("Colon", "Mama", "Normal",
"age", "Colon.by.age", "Mama.by.age")
contrasts.trt.BY.age <- makeContrasts(Colon.by.age,
Mama.by.age,
levels = X2)
*************************************************
Best,
R.
On Wednesday 22 December 2004 14:23, Gordon K Smyth wrote:
> > Date: Tue, 21 Dec 2004 17:21:19 -0500
> > From: Naomi Altman <naomi@stat.psu.edu>
> > Subject: [BioC] F-tests for factorial effects - limma
> > To: bioconductor@stat.math.ethz.ch
> >
> > I am analyzing a 2-factor factorial Affy experiment, with 3 d.f.
for each
> > factor.
> >
> > I would like to get the F-tests for the main effects and
interactions
> > using limma.
> >
> > I have computed all the contrasts, and got the t-tests (both
unadjusted
> > and eBayes). I do know how to combine these into F-tests "by
hand" but I
> > could not figure out if there was a simple way to do this using
limma.
>
> limma doesn't have any easy way to deal with main effects and
interactions,
> at least not with main effects, interactions are actually simpler.
I
> haven't implemented this because I've never been able to figure out
what
> one would do with these things in a microarray context.
>
> To compute F-tests for main effects and interaction, the easiest way
would
> probably be to compute the SS for main effects and interactions by
> non-limma means, then use shrinkVar() to adjust the residual mean
squares,
> i.e., the F-statistic denominators.
>
> If you only want F-tests for interactions, the following code would
work:
>
> X <- model.matrix(~a*b)
> fit <- lmFit(eset, X)
> p <- ncol(X)
> cont.ia <- diag(p)[,attr(X,"assign")==3]
> fit.ia <- eBayes(contrasts.fit(fit, cont.ia))
>
> Now fit.ia contains the F-statistic and p-values for the interaction
in
> fit.ia$F and fit.ia$F.p.value.
>
> > I had a look at FStat (classifyTestsF). There seems to be a
problem, in
> > that the matrix tstat is not premultiplied by the contrast matrix
when
> > the F-statistics are computed. So, if the contrasts are not full-
rank,
> > an error is generated (instead of the F-statistics) because
nrow(Q) !=
> > ncol(tstat).. (See the lines below).
>
> No, the code is correct. FStat is quite happy with non full rank
contrasts
> but the contrast matrix must be applied using contrasts.fit() before
> entering FStat(). You should not expect to see a contrast matrix
inside
> the classifyTestsF() code.
>
> Gordon
>
> > if (fstat.only) {
> > fstat <- drop((tstat%*% Q)^2 %*% array(1, c(r, 1)))
> > attr(fstat, "df1") <- r
> > attr(fstat, "df2") <- df
> > return(fstat)
> > }
> >
> > I figured that before I fiddled with the code, I would check to
make sure
> > that I didn't miss an existing routine to do this.
> >
> > Thanks in advance.
> >
> > Naomi S. Altman 814-865-3791
(voice)
> > Associate Professor
> > Bioinformatics Consulting Center
> > Dept. of Statistics 814-863-7114
(fax)
> > Penn State University 814-865-1348
(Statistics)
> > University Park, PA 16802-2111
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor@stat.math.ethz.ch
> https://stat.ethz.ch/mailman/listinfo/bioconductor
--
Ram?n D?az-Uriarte
Bioinformatics Unit
Centro Nacional de Investigaciones Oncol?gicas (CNIO)
(Spanish National Cancer Center)
Melchor Fern?ndez Almagro, 3
28029 Madrid (Spain)
Fax: +-34-91-224-6972
Phone: +-34-91-224-6900
http://ligarto.org/rdiaz
PGP KeyID: 0xE89B3462
(http://ligarto.org/rdiaz/0xE89B3462.asc)
Este correo electronico y, en su caso, cualquier fichero anexo al
mismo, contiene informacion exclusivamente dirigida a su destinatario
o destinatarios. Si Vd. ha recibido este mensaje por error, se ruega
notificar esta circunstancia al remitente. Las ideas y opiniones
manifestadas en este mensaje corresponden unicamente a su autor y no
representan necesariamente a las del Centro Nacional de
Investigaciones Oncologicas (CNIO).
The information contained in this message is intended for the
addressee only. If you have received this message in error or there
are any problems please notify the originator. Please note that the
Spanish National Cancer Centre (CNIO), does not accept liability for
any statements or opinions made which are clearly the sender's own and
not expressly made on behalf of the Centre.