DEXSeq: large pvalue for expected differentially expressed exons
1
0
Entering edit mode
@chao-jen-wong-7035
Last seen 17 months ago
USA/Seattle/Fred Hutchinson Cancer Rese…

Hi, I am using DEXSeq for testing DEU. The DEXSeqDataSet is converted from SummarizedExpriment instance of containing ranges and counts for exons. The covariates used in the design model is Treatment representing two conditions (DOX and NODOX), each of which has three triplicates.  I notice there are some exons expected to have differentially usage. The counts in one condition is relatively larger than the other. But the pvalue is almost one. I do not understand why, and perhaps you guys can give me some insights and suggestions? 

 

Below is chunk of my data:

> dxr[name,]

LRT p-value: full vs reduced

 

DataFrame with 3 rows and 13 columns

                 groupID   featureID exonBaseMean  dispersion         stat

             <character> <character>    <numeric>   <numeric>    <numeric>

7863:E292716        7863     E292716    69.867123 0.001561678 -0.054938652

5789:E214197        5789     E214197     4.986662 0.316687994  0.008410802

8215:E303543        8215     E303543   161.418531 0.000916123 -0.003169622

                pvalue      padj     NODOX       DOX log2fold_DOX_NODOX

             <numeric> <numeric> <numeric> <numeric>          <numeric>

7863:E292716 1.0000000         1 0.6176518  2.652094           2.102266

5789:E214197 0.9269281         1 0.5525945  1.190415           1.107172

8215:E303543 1.0000000         1 0.3627619  4.178818           3.526000

                             genomicData       countData transcripts

                               <GRanges>        <matrix>      <list>

7863:E292716 chr3:+:[93820935, 93821042] 114 134 155 ...    ########

5789:E214197 chr1:+:[30616742, 30616852]      7 2 20 ...    ########

8215:E303543 chr3:-:[94178072, 94178182] 315 288 324 ...    ########

 

The counts for NODOX (column 4-6) are almost zero whereas DOX (1-3) have more counts:

> counts(dxd)[name, 1:6]

             [,1] [,2] [,3] [,4] [,5] [,6]

7863:E292716  114  134  155    0    0    0

5789:E214197    7    2   20    0    0    0

8215:E303543  315  288  324    0    0    0

 

The size of lib is sufficient:

> colSums(counts(dxd)[, 1:6])

[1] 19786058 17779995 18319056 15141153 22307765 20236315

 

Is there anyway I can fix the problem with modifying any parameters of DEXSeq? 

 

Thanks,

Chao-Jen

dexseq • 1.6k views
ADD COMMENT
0
Entering edit mode

HI Chao-Jen,

Could you include the output of plotDEXSeq with the parameter norCounts=TRUE for these genes?

Alejandro

ADD REPLY
0
Entering edit mode

Below is the model design. "exonic" is a SE object with exonic counts and ranges.

DEXSeqDataSetFromSE(exonic, design=~sample + exon + Treatment:exon)

Figure below (I hope it shows correctly) is the gene on my first row of the aforementioned example.

Thanks, 

Chao-Jen

ADD REPLY
0
Entering edit mode

Here is another plot for the third row of the example:

ADD REPLY
1
Entering edit mode
Alejandro Reyes ★ 1.9k
@alejandro-reyes-5124
Last seen 5 months ago
Novartis Institutes for BioMedical Rese…

Hi Chao-Jen Wong,

Thanks for adding the plots. Your exons have indeed a huge difference in counts between the different conditions. However the difference seems to be related to differences in gene expression rather than differences in exon usage (see the DEXSeq vignette and paper for details). This is the reason why they don't appear to be significant.

Alejandro

ADD COMMENT
0
Entering edit mode

I see. Thanks for the insights!

ADD REPLY

Login before adding your answer.

Traffic: 359 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6