All,
I have a question on window counts generated by csaw.Could you share your thought on this?
I have MeDIP data on 3 conditions with 4 replicates each and matching input samples .So, i have 24 samples and it is paired end data.
I have found that windowCounts
function in csaw generate differing number of windows when different list of bam files are supplied. For instance,
first.param <- readParam(max.frag=650, pe="first",dedup=FALSE)
test1_data_first <- windowCounts("SL01_sorted.bam", param=first.param,width=150)
test2_data_first <- windowCounts("SL02_sorted.bam", param=first.param,width=150)
test_data_first <- windowCounts(c("SL01_sorted.bam","SL02_sorted.bam"), param=first.param,width=150)
gives the below output
> test1_data_first
class: RangedSummarizedExperiment
dim: 73578 1
metadata(4): spacing width shift final.ext
assays(1): counts
rownames: NULL
rowRanges metadata column names(0):
colnames: NULL
colData names(4): bam.files totals ext param
> test2_data_first
class: RangedSummarizedExperiment
dim: 56972 1
metadata(4): spacing width shift final.ext
assays(1): counts
rownames: NULL
rowRanges metadata column names(0):
colnames: NULL
colData names(4): bam.files totals ext param
> test_data_first
class: RangedSummarizedExperiment
dim: 464841 2
metadata(4): spacing width shift final.ext
assays(1): counts
rownames: NULL
rowRanges metadata column names(0):
colnames: NULL
colData names(4): bam.files totals ext param
If this is the case, which would be the ideal way to perform windowCounts? Generating window counts for all samples together or generating window counts for the two groups being compared seperately (group1 and group2, group1 and group3, group2 and group3)?
> sessionInfo()
R version 3.2.4 (2016-03-10)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X 10.9.5 (Mavericks)
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] csaw_1.4.1 SummarizedExperiment_1.0.2
[3] Biobase_2.30.0 GenomicRanges_1.22.4
[5] GenomeInfoDb_1.6.3 IRanges_2.4.8
[7] S4Vectors_0.8.11 BiocGenerics_0.16.1
loaded via a namespace (and not attached):
[1] AnnotationDbi_1.32.3 XVector_0.10.0 edgeR_3.12.0
[4] zlibbioc_1.16.0 GenomicAlignments_1.6.3 BiocParallel_1.4.3
[7] tools_3.2.4 DBI_0.3.1 lambda.r_1.1.7
[10] futile.logger_1.4.1 rtracklayer_1.30.4 futile.options_1.0.0
[13] bitops_1.0-6 biomaRt_2.26.1 RCurl_1.95-4.8
[16] RSQLite_1.0.0 limma_3.26.9 GenomicFeatures_1.22.13
[19] Rsamtools_1.22.0 Biostrings_2.38.4 XML_3.98-1.4
>