Hello,
I would like to process a set of mouse gene st v1.1 arrays in Oligo with the function fitProbeLevelModel(), in analogy of using the function fitPLM (from the library affyPLM). However, this won't work when i would like to summarize the probes into probesets using a 'custom CDF'. Any pointers on how to solve this would be appreciated (or is it a bug?). Please note that it works as expected when using the 'official' PdInfo package.
Thanks,
Guido
> #Preliminaries
> source("http://bioconductor.org/biocLite.R")
Bioconductor version 3.2 (BiocInstaller 1.20.1), ?biocLite for help
> biocLite("pd.mogene.1.1.st.v1")
> install.packages("http://mbni.org/customcdf/20.0.0/entrezg.download/pd.mogene11st.mm.entrezg_20.0.0.tar.gz")
>
> library(oligo)
> celFiles <- list.celfiles(full.names = TRUE)
> affy.data <- read.celfiles(celFiles, pkgname = "pd.mogene11st.mm.entrezg") #using remapped, up-to-date chip design/annotation.
Loading required package: pd.mogene11st.mm.entrezg
Loading required package: RSQLite
Loading required package: DBI
Platform design info loaded.
Reading in : ./G168_A5_1_WT_COLON_LFD_2.CEL
<<snip>>
>
> x.norm.plm <- fitProbeLevelModel(affy.data)
Error in sqliteSendQuery(con, statement, bind.data) :
error in statement: no such table: corepm
>
> affy.data
GenericFeatureSet (storageMode: lockedEnvironment)
assayData: 1178100 features, 25 samples
element names: exprs
protocolData
rowNames: G168_A5_1_WT_COLON_LFD_2.CEL (25 total)
varLabels: exprs dates
varMetadata: labelDescription channel
phenoData
rowNames: G168_A5_1_WT_COLON_LFD_2.CEL (25 total)
varLabels: index
varMetadata: labelDescription channel
featureData: none
experimentData: use 'experimentData(object)'
Annotation: pd.mogene11st.mm.entrezg
>
>
>
>#Works fine when using 'official' PdInfo package...
> affy.data <- read.celfiles(celFiles)
Loading required package: pd.mogene.1.1.st.v1
Platform design info loaded.
Reading in : ./G168_A5_1_WT_COLON_LFD_2.CEL
<<snip>>
> x.norm.plm <- fitProbeLevelModel(affy.data)
Background correcting... OK
Normalizing... OK
Summarizing... OK
Extracting...
Estimates... OK
StdErrors... OK
Weights..... OK
Residuals... OK
Scale....... OK
>
>
> sessionInfo()
R version 3.2.2 Patched (2015-11-03 r69595)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] pd.mogene.1.1.st.v1_3.14.1 pd.mogene11st.mm.entrezg_0.0.1
[3] RSQLite_1.0.0 DBI_0.3.1
[5] oligo_1.34.2 Biostrings_2.38.4
[7] XVector_0.10.0 IRanges_2.4.8
[9] S4Vectors_0.8.11 Biobase_2.30.0
[11] oligoClasses_1.32.0 BiocGenerics_0.16.1
[13] BiocInstaller_1.20.1
loaded via a namespace (and not attached):
[1] affxparser_1.42.0 splines_3.2.2
[3] GenomicRanges_1.22.4 zlibbioc_1.16.0
[5] bit_1.1-12 foreach_1.4.3
[7] GenomeInfoDb_1.6.3 tools_3.2.2
[9] SummarizedExperiment_1.0.2 ff_2.2-13
[11] iterators_1.0.8 preprocessCore_1.32.0
[13] affyio_1.40.0 codetools_0.2-14
>

Thanks James, working fine now!
Outcome:
Dear James/Benilton,
Using the current
oligoversion I experienced the same problem as described before (though for a set of mogene 2.0 ST arrays), but I was able to get it running applying the 'fix' listed above by James. Nevertheless, with the upcoming BioC fall release in mind, I think it would be nice if this could be fixed permanently. Would you mind having a look at this?In addition, how to best 'extract' the normalized data from an oligoPLM object? I am asking because the accessor
exprs()doesn't work on such objects.After applying the work-around mentioned above:
<<EDIT>>
Never mind my 2nd question;
coef()should be used to extract the normalized expression data...> head(coef(x.norm.plm))GSM2028011_Ctrl1.CEL.gz GSM2028012_Ctrl2.CEL.gz
100009600_at 5.452908 5.345068
100009609_at 3.636248 3.638303
100009614_at 4.856107 4.789826
100009664_at 5.250991 5.607274
100012_at 4.973587 5.113751
100017_at 10.579906 10.675544
GSM2028013_Ctrl3.CEL.gz GSM2028014_LPS1.CEL.gz GSM2028015_LPS2.CEL.gz
100009600_at 5.503566 5.790891 5.534350
100009609_at 3.587186 3.620297 3.680230
100009614_at 4.950158 5.170772 4.920435
100009664_at 5.308606 5.459623 5.421679
100012_at 5.057979 4.429790 4.850578
100017_at 10.613880 10.099777 10.004951
GSM2028016_LPS3.CEL.gz
100009600_at 5.573990
100009609_at 3.477622
100009614_at 5.178364
100009664_at 5.356755
100012_at 4.981260
100017_at 9.315269
>