Hi all,
I am trying to analyze ATACseq data from mouse samples. I have 3 groups, with two samples each. I aligned with bowtie to mm10 and called peaks using MACS2, all with the Encode ATACseq pipeline.
I now want to call differentially opened chromatin regions with DiffBind, but it gives me an error when I want to normalize. Also when I run dba.analyze, it gives me the same error. I don't understand what I am doing wrong?
I appreciate any input! best, Ben
library(DiffBind)
dir <- "/staging/leuven/stg_00072/Ben/ATACseq"
setwd(dir)
## read in annotation table
dba <- read.csv(file.path(dir, "samples.csv"), sep = ";")
## read in samples
dba <- dba(sampleSheet = dba)
## count
dba <- dba.count(dba)
## add contrast
dba <- dba.contrast(dba, minMembers = 2)
## remove blacklisted regions
dba <- dba.blacklist(dba)
## normalize data
dba.norm <- dba.normalize(dba)
After running this code i get the following error:
Error in pv$binding[, colnum] <- pv$peaks[[i]]$RPKM: number of items to replace is not a multiple of replacement length
Traceback:
1. dba.normalize(dba)
2. pv.doResetScore(res)
3. pv.setScore(pv, score = DBA_SCORE_NORMALIZED, bLog = FALSE)
4. pv.doSetScore(pv, DBA_SCORE_RPKM)
It gives (offcourse) the same after just running dba.analyze:
Applying Blacklist/Greylists...
Genome detected: Mmusculus.UCSC.mm10
Applying blacklist...
Removed: 2392 of 151927 intervals.
Removed 2392 (of 151927) consensus peaks.
Normalize DESeq2 with defaults...
Normalize error: Error in pv$binding[, colnum] <- pv$peaks[[i]]$RPKM: number of items to replace is not a multiple of replacement length
Unable to normalize datset with DESeq2.
sessionInfo():
R version 4.0.3 (2020-10-10)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /vsc-hard-mounts/leuven-data/328/vsc32808/miniconda/envs/R_base_5/lib/libopenblasp-r0.3.15.so
locale:
[1] C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] DiffBind_3.0.15 SummarizedExperiment_1.20.0
[3] Biobase_2.50.0 MatrixGenerics_1.2.1
[5] matrixStats_0.58.0 GenomicRanges_1.42.0
[7] GenomeInfoDb_1.26.4 IRanges_2.24.1
[9] S4Vectors_0.28.1 BiocGenerics_0.36.0
loaded via a namespace (and not attached):
[1] uuid_0.1-4 backports_1.2.1 GOstats_2.56.0
[4] BiocFileCache_1.14.0 plyr_1.8.6 repr_1.1.3
[7] GSEABase_1.52.1 splines_4.0.3 BiocParallel_1.24.1
[10] ggplot2_3.3.3 amap_0.8-18 digest_0.6.27
[13] invgamma_1.1 htmltools_0.5.1.1 GO.db_3.12.1
[16] SQUAREM_2021.1 fansi_0.4.2 magrittr_2.0.1
[19] checkmate_2.0.0 memoise_2.0.0 BSgenome_1.58.0
[22] base64url_1.4 limma_3.46.0 Biostrings_2.58.0
[25] annotate_1.68.0 systemPipeR_1.24.3 askpass_1.1
[28] bdsmatrix_1.3-4 prettyunits_1.1.1 jpeg_0.1-8.1
[31] colorspace_2.0-1 blob_1.2.1 rappdirs_0.3.3
[34] apeglm_1.12.0 ggrepel_0.9.1 dplyr_1.0.5
[37] crayon_1.4.1 RCurl_1.98-1.3 jsonlite_1.7.2
[40] graph_1.68.0 genefilter_1.72.1 brew_1.0-6
[43] survival_3.2-11 VariantAnnotation_1.36.0 glue_1.4.2
[46] gtable_0.3.0 zlibbioc_1.36.0 XVector_0.30.0
[49] DelayedArray_0.16.3 V8_3.4.0 Rgraphviz_2.34.0
[52] scales_1.1.1 pheatmap_1.0.12 mvtnorm_1.1-1
[55] DBI_1.1.1 edgeR_3.32.1 Rcpp_1.0.6
[58] xtable_1.8-4 progress_1.2.2 emdbook_1.3.12
[61] bit_4.0.4 rsvg_2.1 truncnorm_1.0-8
[64] AnnotationForge_1.32.0 httr_1.4.2 gplots_3.1.1
[67] RColorBrewer_1.1-2 ellipsis_0.3.2 pkgconfig_2.0.3
[70] XML_3.99-0.6 dbplyr_2.1.1 locfit_1.5-9.4
[73] utf8_1.2.1 tidyselect_1.1.1 rlang_0.4.11
[76] AnnotationDbi_1.52.0 munsell_0.5.0 tools_4.0.3
[79] cachem_1.0.4 generics_0.1.0 RSQLite_2.2.5
[82] evaluate_0.14 stringr_1.4.0 fastmap_1.1.0
[85] yaml_2.2.1 bit64_4.0.5 caTools_1.18.2
[88] purrr_0.3.4 RBGL_1.66.0 xml2_1.3.2
[91] biomaRt_2.46.3 compiler_4.0.3 curl_4.3.1
[94] png_0.1-7 geneplotter_1.68.0 tibble_3.1.1
[97] stringi_1.5.3 GenomicFeatures_1.42.2 lattice_0.20-44
[100] IRdisplay_1.0 Matrix_1.3-2 vctrs_0.3.8
[103] pillar_1.6.0 lifecycle_1.0.0 irlba_2.3.3
[106] data.table_1.14.0 bitops_1.0-7 rtracklayer_1.50.0
[109] R6_2.5.0 latticeExtra_0.6-29 hwriter_1.3.2
[112] ShortRead_1.48.0 KernSmooth_2.23-18 MASS_7.3-54
[115] gtools_3.8.2 assertthat_0.2.1 DESeq2_1.30.1
[118] openssl_1.4.4 Category_2.56.0 rjson_0.2.20
[121] withr_2.4.2 GenomicAlignments_1.26.0 batchtools_0.9.15
[124] Rsamtools_2.6.0 GenomeInfoDbData_1.2.4 hms_1.0.0
[127] grid_4.0.3 IRkernel_1.1.1 DOT_0.1
[130] coda_0.19-4 GreyListChIP_1.22.0 ashr_2.2-47
[133] mixsqp_0.3-43 pbdZMQ_0.3-5 bbmle_1.0.23.1
[136] numDeriv_2016.8-1.1 base64enc_0.1-3
If you could give me access to your DBA object after calling
dba.count()
(eg download link) I can take a look at what is going on -- I'd definitely like to get to the bottom of this!Sure! Can I send you an email/pm?
Email me at the
DiffBind
maintainer address.