Hello,
Using DiffBind, I would like to get the peaks in common between the edgeR approach and the DESeq2 approach. With the edgeR approach, I'm getting 135 peaks (with significant differences between two conditions). With the DESeq2 approach, I'm getting 192 peaks. The result of dba.plotVenn() tells me that there are 70 peaks in common between the two approaches. When I run:
dba.report(dbObj, method=DBA_ALL_METHODS, contrast=1, th=0.05)
Instead of getting 70 peaks, I get 135 peaks as if I had run:
dba.report(dbObj, method=DBA_EDGER, contrast=1, th=0.05)
which, as expected, gives me 135 peaks. Is there anything I can do on my side?
Here is the result of my sessionInfo():
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets methods base
other attached packages:
[1] forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
[4] purrr_0.3.4 readr_1.4.0 tidyr_1.1.3
[7] tibble_3.1.2 tidyverse_1.3.1 ChIPQC_1.28.0
[10] DiffBind_3.2.3 SummarizedExperiment_1.22.0 MatrixGenerics_1.4.0
[13] matrixStats_0.59.0 ggplot2_3.3.5 ensembldb_2.16.0
[16] AnnotationFilter_1.16.0 GenomicFeatures_1.44.0 AnnotationDbi_1.54.1
[19] Biobase_2.52.0 GenomicRanges_1.44.0 GenomeInfoDb_1.28.0
[22] IRanges_2.26.0 S4Vectors_0.30.0 AnnotationHub_3.0.1
[25] BiocFileCache_2.0.0 dbplyr_2.1.1 BiocGenerics_0.38.0
loaded via a namespace (and not attached):
[1] rappdirs_0.3.3 rtracklayer_1.52.0
[3] AnnotationForge_1.34.0 coda_0.19-4
[5] bit64_4.0.5 knitr_1.33
[7] irlba_2.3.3 DelayedArray_0.18.0
[9] data.table_1.14.0 hwriter_1.3.2
[11] KEGGREST_1.32.0 RCurl_1.98-1.3
[13] generics_0.1.0 cowplot_1.1.1
[15] TxDb.Rnorvegicus.UCSC.rn4.ensGene_3.2.2 RSQLite_2.2.7
[17] shadowtext_0.0.8 bit_4.0.4
[19] enrichplot_1.12.1 base64url_1.4
[21] lubridate_1.7.10 xml2_1.3.2
[23] httpuv_1.6.1 assertthat_0.2.1
[25] batchtools_0.9.15 viridis_0.6.1
[27] amap_0.8-18 apeglm_1.14.0
[29] xfun_0.24 hms_1.1.0
[31] evaluate_0.14 promises_1.2.0.1
[33] fansi_0.5.0 restfulr_0.0.13
[35] progress_1.2.2 readxl_1.3.1
[37] caTools_1.18.2 Rgraphviz_2.36.0
[39] igraph_1.2.6 DBI_1.1.1
[41] ellipsis_0.3.2 backports_1.2.1
[43] V8_3.4.2 annotate_1.70.0
[45] biomaRt_2.48.1 vctrs_0.3.8
[47] cachem_1.0.5 withr_2.4.2
[49] ggforce_0.3.3 DOT_0.1
[51] BSgenome_1.60.0 bdsmatrix_1.3-4
[53] checkmate_2.0.0 GenomicAlignments_1.28.0
[55] treeio_1.16.1 prettyunits_1.1.1
[57] TxDb.Mmusculus.UCSC.mm10.knownGene_3.10.0 DOSE_3.18.0
[59] ape_5.5 lazyeval_0.2.2
[61] crayon_1.4.1 genefilter_1.74.0
[63] edgeR_3.34.0 pkgconfig_2.0.3
[65] tweenr_1.0.2 nlme_3.1-152
[67] ProtGenerics_1.24.0 rlang_0.4.11
[69] lifecycle_1.0.0 filelock_1.0.2
[71] modelr_0.1.8 GOstats_2.58.0
[73] invgamma_1.1 cellranger_1.1.0
[75] rsvg_2.1.2 polyclip_1.10-0
[77] graph_1.70.0 Matrix_1.3-4
[79] aplot_0.0.6 ashr_2.2-47
[81] chipseq_1.42.0 boot_1.3-28
[83] reprex_2.0.0 pheatmap_1.0.12
[85] png_0.1-7 viridisLite_0.4.0
[87] rjson_0.2.20 bitops_1.0-7
[89] KernSmooth_2.23-20 Biostrings_2.60.1
[91] blob_1.2.1 mixsqp_0.3-43
[93] SQUAREM_2021.1 qvalue_2.24.0
[95] ShortRead_1.50.0 brew_1.0-6
[97] jpeg_0.1-8.1 TxDb.Mmusculus.UCSC.mm9.knownGene_3.2.2
[99] scales_1.1.1 memoise_2.0.0
[101] GSEABase_1.54.0 magrittr_2.0.1
[103] plyr_1.8.6 gplots_3.1.1
[105] zlibbioc_1.38.0 compiler_4.1.0
[107] scatterpie_0.1.6 tinytex_0.32
[109] BiocIO_1.2.0 bbmle_1.0.23.1
[111] RColorBrewer_1.1-2 plotrix_3.8-1
[113] Rsamtools_2.8.0 cli_3.0.0
[115] systemPipeR_1.26.2 XVector_0.32.0
[117] Category_2.58.0 patchwork_1.1.1
[119] MASS_7.3-54 tidyselect_1.1.1
[121] stringi_1.6.2 emdbook_1.3.12
[123] yaml_2.2.1 GOSemSim_2.18.0
[125] locfit_1.5-9.4 latticeExtra_0.6-29
[127] ggrepel_0.9.1 grid_4.1.0
[129] VariantAnnotation_1.38.0 fastmatch_1.1-0
[131] tools_4.1.0 rstudioapi_0.13
[133] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 gridExtra_2.3
[135] farver_2.1.0 ggraph_2.0.5
[137] digest_0.6.27 rvcheck_0.1.8
[139] BiocManager_1.30.16 shiny_1.6.0
[141] Rcpp_1.0.6 broom_0.7.8
[143] BiocVersion_3.13.1 later_1.2.0
[145] httr_1.4.2 Nozzle.R1_1.1-1
[147] TxDb.Celegans.UCSC.ce6.ensGene_3.2.2 colorspace_2.0-1
[149] rvest_1.0.0 fs_1.5.0
[151] XML_3.99-0.6 truncnorm_1.0-8
[153] splines_4.1.0 TxDb.Dmelanogaster.UCSC.dm3.ensGene_3.2.2
[155] RBGL_1.68.0 tidytree_0.3.4
[157] graphlayouts_0.7.1 xtable_1.8-4
[159] jsonlite_1.7.2 ggtree_3.0.2
[161] tidygraph_1.2.0 R6_2.5.0
[163] pillar_1.6.1 htmltools_0.5.1.1
[165] mime_0.11 glue_1.4.2
[167] fastmap_1.1.0 BiocParallel_1.26.0
[169] interactiveDisplayBase_1.30.0 ChIPseeker_1.28.3
[171] fgsea_1.18.0 GreyListChIP_1.24.0
[173] mvtnorm_1.1-2 utf8_1.2.1
[175] lattice_0.20-44 numDeriv_2016.8-1.1
[177] curl_4.3.1 gtools_3.9.2
[179] GO.db_3.13.0 survival_3.2-11
[181] limma_3.48.1 rmarkdown_2.9
[183] munsell_0.5.0 DO.db_2.9
[185] GenomeInfoDbData_1.2.6 haven_2.4.1
[187] reshape2_1.4.4 gtable_0.3.0
[189] TxDb.Hsapiens.UCSC.hg18.knownGene_3.2.2
Thanks a lot!