I have done a pair comparison with DEseq2 (wald test) to find differentially expressed genes between two samples with 6 replicates, for the DEseq2 result, i got exactly same padj value for all the genes and it is not significant, is this normal ? I don't think the padj should be the same for all the genes. I have attached the code I used.
The paper which handled the same dataset has published that they could identify ~1000 DEGs for the same samples using edgeR etLRT test.
Then why i am getting this kind of a result. The author has used edgeR package etLRT test whereas I am using DESeq2 wald test. Is the difference in DEGs is due to the usage of two packages and two type of test
Please go through it and help me sort out this issue.
library(DESeq2)
countdata <- read.table("trt_16_32_64_matrix.txt", header=TRUE, row.names=1)
countdata
countdata <- as.matrix(countdata)
countdata
(condition <- factor(c('exp_Day16','exp_Day16','exp_Day16','exp_Day16','exp_Day16','exp_Day16','exp_Day32','exp_Day32','exp_Day32','exp_Day32','exp_Day32','exp_Day32',
'exp_Day64','exp_Day64','exp_Day64','exp_Day64','exp_Day64','exp_Day64')))
(coldata <- data.frame(row.names=colnames(countdata), condition))
dds <- DESeqDataSetFromMatrix(countData=countdata, colData=coldata, design=~condition)
dds
dds <- dds[ rowSums(counts(dds)) > 10, ]
dds
dds <- DESeq(dds, minReplicatesForReplace=Inf)
rld <- rlogTransformation(dds)
vst <- vst(dds)
resultsNames(dds)
day32_16 <- results(dds, contrast=c("condition", "exp_Day32", "exp_Day16"), cooksCutoff=FALSE, independentFiltering=FALSE)
write.table(day32_16,file="Deseq_results32_vs_16.txt", quote = FALSE, sep="\t")
day32_16
day64_32 <- results(dds, contrast=c("condition", "exp_Day64", "exp_Day32"), cooksCutoff=FALSE, independentFiltering=FALSE)
write.table(day64_32,file="Deseq_results64_vs_32.txt", quote = FALSE, sep="\t")
day64_32
day64_16 <- results(dds, contrast=c("condition", "exp_Day64", "exp_Day16"), cooksCutoff=FALSE, independentFiltering=FALSE)
write.table(day64_16,file="Deseq_results64_vs_16.txt", quote = FALSE, sep="\t")
day64_16
R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)
Matrix products: default
locale:
[1] LC_COLLATE=English_India.1252 LC_CTYPE=English_India.1252 LC_MONETARY=English_India.1252 LC_NUMERIC=C
[5] LC_TIME=English_India.1252
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] DESeq2_1.26.0 SummarizedExperiment_1.16.0 DelayedArray_0.12.0 BiocParallel_1.20.0
[5] matrixStats_0.55.0 Biobase_2.46.0 GenomicRanges_1.38.0 GenomeInfoDb_1.22.0
[9] IRanges_2.20.1 S4Vectors_0.24.0 BiocGenerics_0.32.0
loaded via a namespace (and not attached):
[1] bit64_0.9-7 splines_3.6.1 Formula_1.2-3 assertthat_0.2.1 latticeExtra_0.6-29
[6] blob_1.2.1 GenomeInfoDbData_1.2.2 pillar_1.4.6 RSQLite_2.1.2 backports_1.1.5
[11] lattice_0.20-38 glue_1.3.1 digest_0.6.22 RColorBrewer_1.1-2 XVector_0.26.0
[16] checkmate_1.9.4 colorspace_1.4-1 htmltools_0.4.0 Matrix_1.2-17 XML_3.98-1.20
[21] pkgconfig_2.0.3 genefilter_1.68.0 zlibbioc_1.32.0 purrr_0.3.3 xtable_1.8-4
[26] scales_1.0.0 jpeg_0.1-8.1 htmlTable_2.0.1 tibble_2.1.3 annotate_1.64.0
[31] ggplot2_3.3.2 ellipsis_0.3.1 nnet_7.3-12 survival_3.2-3 magrittr_1.5
[36] crayon_1.3.4 memoise_1.1.0 foreign_0.8-71 tools_3.6.1 data.table_1.13.0
[41] lifecycle_0.2.0 stringr_1.4.0 locfit_1.5-9.1 munsell_0.5.0 cluster_2.1.0
[46] AnnotationDbi_1.48.0 compiler_3.6.1 rlang_0.4.7 grid_3.6.1 RCurl_1.95-4.12
[51] rstudioapi_0.11 htmlwidgets_1.5.1 bitops_1.0-6 base64enc_0.1-3 gtable_0.3.0
[56] DBI_1.1.0 R6_2.4.1 gridExtra_2.3 knitr_1.29 dplyr_0.8.3
[61] bit_1.1-14 Hmisc_4.3-0 stringi_1.4.3 Rcpp_1.0.2 geneplotter_1.64.0
[66] vctrs_0.3.2 rpart_4.1-15 acepack_1.4.1 png_0.1-7 tidyselect_0.2.5
[71] xfun_0.16
>
This is the pvalue and padj I am getting for day 32_16
baseMean log2FoldChange lfcSE stat pvalue padj
gene071790 0.00364470990823371 0 3.67603702902271 0 1 1
gene071910 2.52670110106324 -0.925869377753292 3.6735896523344 -0.252033968237292 0.801014808228701 1
gene071920 0.0017684908046795 0 3.67603703366083 0 1 1
gene072140 0.0132338542310079 -1.63447209000514 3.67524930232428 -0.444724141290627 0.656519120921536 1
gene072170 0.0233134553727202 -1.69569030301467 3.67543399998756 -0.461357843188154 0.644541891644605 1
gene072280 0.0090162636710289 -1.71864674299001 3.67550534890818 -0.467594678783569 0.640074470953938 1
gene072340 1.10232459596773 -1.29929603334227 1.69869436533412 -0.764879227162627 0.444343464578242 1
gene072350 0.0946211792117389 -0.925869002733872 3.67358965348958 -0.252033866072761 0.801014887195908 1
gene072380 0.382201543382355 -2.46595641962353 2.34574179393414 -1.05124802141491 0.293144693024846 1
gene072420 0.727765396747566 -1.07434573556786 1.30955623458107 -0.820389157180061 0.411994294679308 1
gene072460 0.00556966720967944 -1.83503712195606 3.67588448263864 -0.499209681540053 0.617631674812785 1
gene072500 0.227903343157695 -2.42970097182479 2.63053686527404 -0.923652127403915 0.355667464392678 1
Cross posted to Biostars https://www.biostars.org/p/9484960/